Groundwater Quality Sampling West Placer County, California

Prepared for:

Placer County

December 21, 2017

Groundwater Quality Sampling West Placer County, California

Prepared for:

Placer County 11476 C Avenue Auburn, CA 95603

Contact:

Brett Storey Project Manager (530) 745-3011

Prepared by:

GEI Consultants 2868 Prospect Park Drive, Suite 400 Sacramento, CA 95670

Contact:

Richard Shatz Principal Hydrogeologist (916) 631.4566

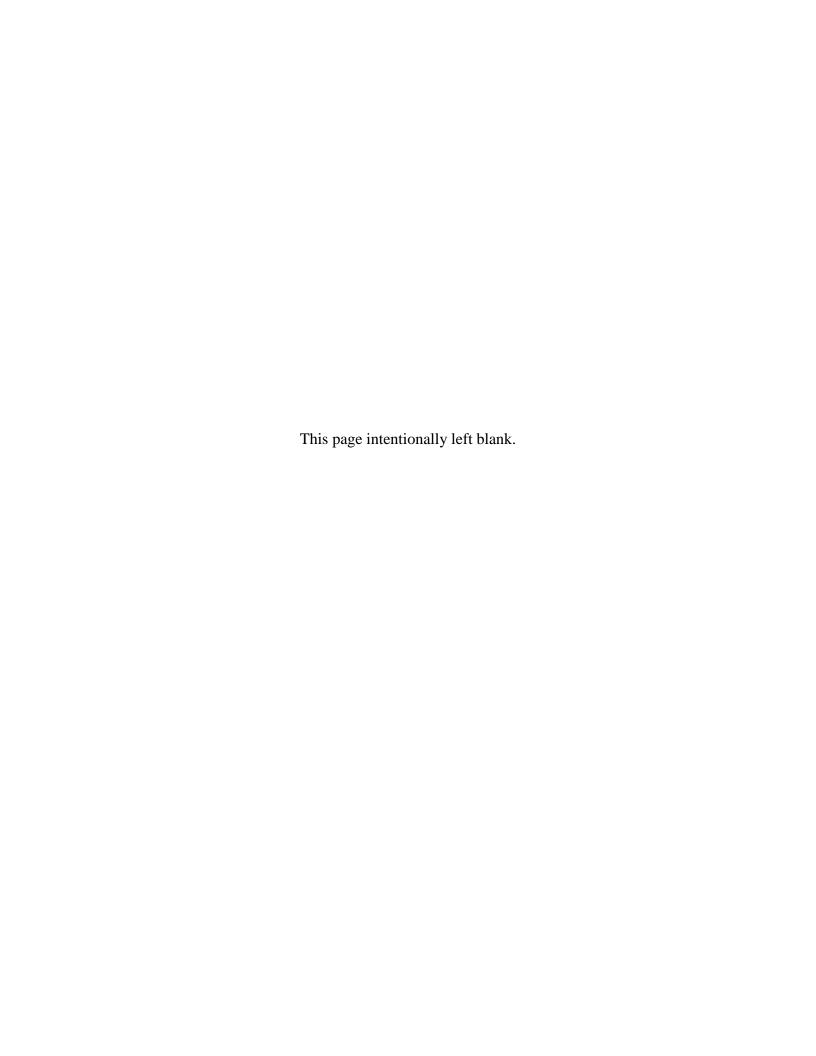
December 21, 2017

GEI Project No. 1610374 Subtask 2.2

GROUNDWATER QUALITY SAMPLING WEST PLACER COUNTY

Certifications and Seals

This report and analysis was prepared by the following GEI Consultants Inc. professional hydrogeologists.


Date: 12/21/17 Tuling Willing Date: 12-21-17

David Fairman Project Hydrogeologist California Certified Hydrogeologist C.H.G. No. 1000

Richard W. Shatz Principal Hydrogeologist California Certified Hydrogeologist C.H.G. No. 84

ate: 12/21/2017 Mark S. Wi

Vice President California Professional Engineer P.E. C035671

Table of Contents

1.	Introduction	1
2.	Background	1
3.	Monitoring Wells	2
4.	Sampling Procedures	3
5.	Sampling Conditions	5
6.	Results	7
7.	Conclusion and Recommendations	10
8.	References	12
Tab	ole 1. Monitoring Well Details ole 2: Southwestern Area Sample Results	3 6
	ole 3: Lincoln Area Sampling Results ures	6
Figu	ure 1: Monitoring Well Locations	4
_	ure 2: Precipitation and Sampling Events	5
Figu	ure 3: TDS Trends in the Southwest Area	8
Figu	ure 4: TDS Trends in the Lincoln Area	9

i

Attachments

Attachment A: Purge Logs

Attachment B: Laboratory Analytical Results

This page intentionally left blank.

1. Introduction

In 2014, Placer County received grant funding from the California Department of Water Resources (DWR) though the Proposition 1, Sustainable Groundwater Planning – Counties with Stressed Basins Grant Agreement, DWR Grant No. 4600011504, for the Western Placer County Groundwater Assessment Project (Project). The Project Work Plan included four tasks:

- 1. Develop a summary of land use authorities and forecast of future demand
- 2. Develop a Groundwater Sustainability Agency organization structure
- 3. Develop a well extraction facilities inventory database and website
- 4. Perform water quality sampling at six selected wells

This report summarizes the water quality sampling results. Sampling for this task was performed quarterly starting in the fourth quarter (Q4, October-December) of 2016 and concluded the third quarter (Q3, July-September) of 2017. Six wells were chosen for sampling based on results of a regional assessment of water quality (GEI 2017a) performed in 2015 which indicated that these wells had elevated concentrations of salts. Salt concentrations, measured as total dissolved solids (TDS), are an indicator of the general suitability of water for various beneficial uses, including drinking water and agricultural uses. Quarterly sampling was performed from Fall 2016 to Summer 2017 to assess whether TDS concentrations at these wells are stable, decreasing, or increasing and whether groundwater in the area is being degraded.

Degradation of water quality is one of the six undesirable results (also known as "sustainability indicators") that need to be avoided for compliance with the Sustainable Groundwater Management Act of 2014 (SGMA). The information from this water quality trend analysis will be used during the development of a Groundwater Sustainability Plan (GSP) for the North American Subbasin (NASb) by helping to characterize if water quality is being degraded and will help determine if groundwater management actions are needed to address this sustainability indicator.

2. Background

As part of the Western Placer County Groundwater Management Plan (WPC GMP) Year 8 implementation, the City of Roseville, City of Lincoln, Placer County Water Agency, and California American Water (WPC Partners) authorized GEI Consultants (GEI) to sample monitoring wells to characterize water quality throughout WPC and provide a regional assessment of groundwater quality conditions (GEI 2017a). Placer County also collected samples from monitoring wells. This sampling was performed prior to the creation of the West Placer Groundwater Sustainability Agency (WPGSA) and before the involvement of Nevada Irrigation District (NID) in formalized groundwater planning activities in WPC. The baseline water quality samples were collected in fall 2015, following four years of statewide drought when above normal pumping of groundwater may have affected groundwater quality

due to upwelling or migration of brackish water from underlying marine sediments. Placer County collected samples a couple of months later, during the winter 2015.

The 2015 baseline water quality results (GEI 2017a) showed that most of the groundwater in the WPC area is of good quality; however, wells were observed with elevated concentrations of TDS and other constituents, such as Hexavalent Chromium (Cr⁺⁶) and Trihalomethanes (THMs). Sampling for trends of these other constituents (CR⁺⁶ and THMs) were performed by the WPC Partners in a separate study funded by the Partners for Year 9 GMP implementation (GEI 2017b). The six wells sampled in this study were analyzed for TDS and general minerals (major dissolved constituents). This study assesses only TDS trends as a measure of general water quality. TDS has a secondary drinking water maximum contaminant level (MCL) of 500 mg/L and a primary MCL of 1000 mg/L. Both Primary and Secondary MCLs are enforceable drinking water standards in California. Suitability of water for agricultural uses also goes down significantly when the concentrations are above the drinking water MCLs. The presence of salts in groundwater can either be naturally occurring or a result of human activities.

Five of the wells observed with elevated levels of TDS were generally screened in the Lower Mehrten Aquifer, with one screened in the Shallow Aquifer (Laguna/Turlock Lake/Riverbank Formations). The Lower Mehrten Aquifer, and in some areas the Shallow Aquifer, is underlain and in direct contact with the Ione Formation. The Ione Formation was deposited in a marine environment and contains both fresh and brackish water. It is believed that the source of salts in the sampled wells is from the brackish water in the underlying Ione Formation. However, both the Lower Mehrten and Laguna/Turlock/Riverbank Formations are exposed at the ground surface and can receive recharge directly through precipitation. The monitoring wells are located just west of these exposures. Furthermore, TDS concentrations could also change due to chemical reactions when low TDS water encounters sediments and salts are leached from the sediments. Eventually, the salts contained in the sediments are depleted and TDS levels stabilize.

In general, monitoring wells located in the southwestern portion of Western Placer County, in the Lower Mehrten Formation, collect water from hundreds of feet below ground surface and are in a confined aquifer thousands of feet from where water could enter the aquifers. Water from recent rains would take several hundreds of years to reach the monitoring wells. In contrast, the wells located in the central eastern portion of the basin, near Lincoln, are relatively shallow and in or near potential recharge areas where the quality of the water could be affected by recharge in a much shorter timeframe. In both areas the aquifers are underlain by the Ione Formation which could contribute brackish water and affect water quality.

3. Monitoring Wells

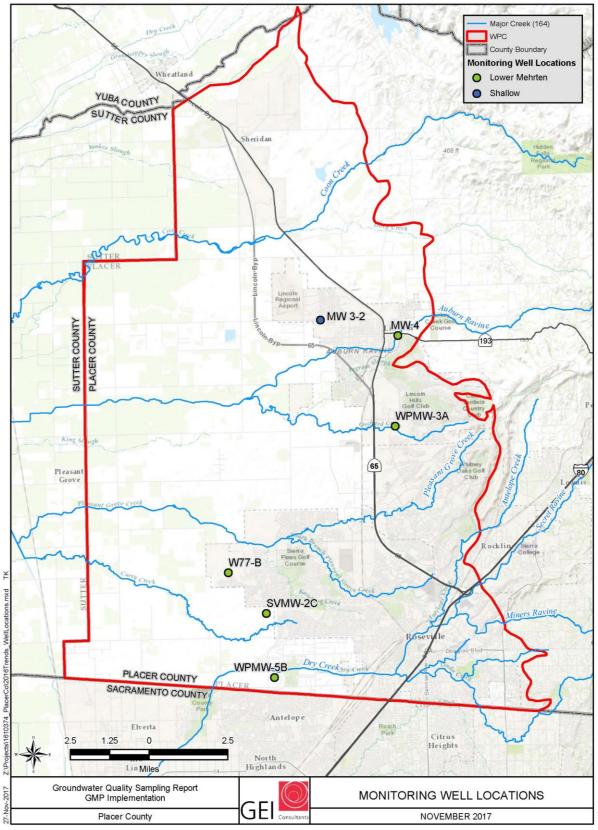
The wells sampled are listed in **Table 1** which indicates well depth, screened intervals, and aquifer monitored. **Figure 1** shows the location of the monitoring wells. The tops of all wells are protected by above-ground security vaults which prevent rain water from accumulating in the vaults and potentially seeping into the wells and affecting water quality.

Table 1. Monitoring Well Details

Well ID	Owner/ Purveyor	Depth	Screen Interval	Aquifer
		(ft)	(ft bgs)	
MW 3-2	City of Lincoln	75	65-75	Shallow
MW-4	City of Lincoln	25	15-25	Lower Mehrten
WPMW-3A	City of Lincoln	53	48-53	Lower Mehrten
WPMW-5B	California American Water	650	630-650	Lower Mehrten
W77-B	City of Roseville	604	584-594	Lower Mehrten
SVMW-2C	City of Roseville	670	655-665	Lower Mehrten

ft. bgs = feet below ground surface

4. Sampling Procedures


Groundwater monitoring was performed by GEI employees experienced with groundwater sampling. This section describes the protocol used during sample collection. All wells were sampled after purging each well with a submersible pump, except MW-4 which was purged using a new disposable bailer.

GEI personnel measured the depth to groundwater at the monitoring wells using an electric water level sounder accurate to 0.01 foot. The sounder was cleaned and decontaminated prior to the first monitoring well measurement and between each well site. Depth to water measurements were used to determine the volume of water within the well casing and subsequently the purge volume and time for each well. After the depth to groundwater was measured the monitoring wells were purged using the temporary submersible pump or bailer.

The temporary pump and vinyl tubing were cleaned and decontaminated between each well by submersing the pump and bottom of tube that had been submersed in the groundwater at the wells in a solution of Liquinox and running the pump for several minutes. The pump was then submersed in tap water and pumped for three to five minutes.

Each well was purged by pumping at least three well casing volumes of water to obtain representative water samples from the aquifers. The purge water was discharged to the land surface near the monitoring wells. Field parameters, including temperature, pH, electrical conductivity, dissolved oxygen, and turbidity were also measured during pumping to confirm stabilization prior to sample collection. These measurements, along with pumping rates and volumes, are documented on the field purge logs contained in **Attachment A**.

Once each monitoring well was purged, GEI personnel collected water samples directly into laboratory-prepared bottles. Nitrile gloves were worn while collecting samples. A new set of gloves was used at each monitoring well. The samples were placed in an ice chest, cooled below 4 degrees Celsius, and delivered to BSK Laboratories (BSK) of Rancho Cordova, California under standard chain-of-custody procedures. BSK Laboratories is a California-certified laboratory. **Attachment B** contains the laboratory data sheets and chain-of-custody forms.

Figure 1: Monitoring Well Locations

5. Sampling Conditions

Conditions during the four quarterly (Q4 2016 to Q3 2017) groundwater quality sampling events varied depending on the season and each event had different conditions prior to sampling. No samples were collected during rain events, but conditions prior to sampling may affect water quality results (e.g. events may have been preceded by dry conditions, rain events, or pumping season). No water was present inside of the security vaults to indicate that rain water entered the monitoring well casings from the surface.

Significant rains in the area began in October 2016 and continued through February, 2017 with occasional showers in March, April, May, and July as shown in **Figure 2**. Sampling events in Q4 2016, Q1 2017, and Q2 2017 were preceded by significant storm events (>.25") by at least 30 days or less. These storm events may have contributed to significant groundwater recharge from the rains which could reduce salinity, assist in the migration of high salinity water or potentially leach salts from the soils.

Groundwater levels changed between sampling events as shown in **Tables 2 and 3**. From Q4 2016 to Q1 2017 groundwater levels rose by 1 to 4 feet, except at wells MW 3-2 and WPMW-3A which changed less than 0.6 feet. The change was likely due to recharge from the rains but also could be related to decreased pumping. Increases in groundwater levels could change the pressure on the underlying aquifers and limit upwelling or migration of water from the underlying Ione Formation.

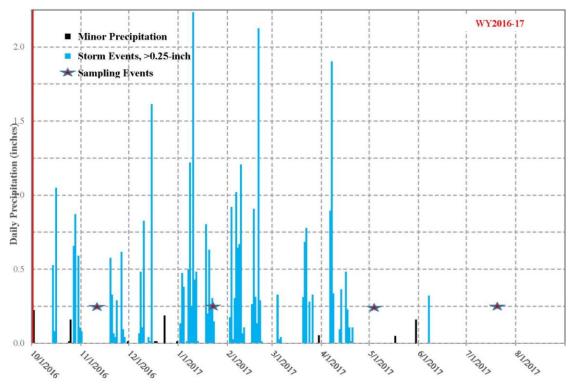


Figure 2: Precipitation and Sampling Events

Table 2: Southwestern Area Sample Results

	Southwestern Area Wells						
Well Name	Date Sampled	TDS* (mg/L)	Groundwater Levels (Ft BTOC)				
	7/13/2017	840	115.27				
WPMW-5B (Lower Mehrten)	4/27/2017	830	111.08				
	1/16/2017	820	113.75				
	11/2/2016	860	116.38				
	11/12/2015	880					
	2/23/2015	890					
	7/13/2017	950	110.90				
W77-B	4/27/2017	960	109.48				
(Lower	1/16/2017	880	111.76				
Mehrten)	10/31/2016	990	114.13				
	9/23/2015	970					
	7/13/2017	1400	133.99				
SVMW-2C	4/26/2017	1300	131.94				
	1/16/2017	NS	NS				
(Lower	11/4/2016	1400	135.97				
Mehrten)	9/15/2015	1400					
	6/7/2011	1200					

Notes:

* Secondary MCL of 500 mg/L

Above MCL

NS Not Sampled
mg/L milligram per liter
Ft BTOC Feet Below Top of Casing

Table 3: Lincoln Area Sampling Results

	Lincoln Area Wells					
Well Name	Date Sampled	TDS * (mg/L)	Groundwater Levels (Ft BTOC)			
	7/12/2017	440	57.83			
	4/25/2017	550	54.51			
MW 3-2	1/17/2017	690	57.21			
(Shallow)	10/28/2016	460	57.85			
	9/29/2015	510				
	1/3/2005	380				
	7/12/2017	1500	22.30			
MW-4	4/28/2017	1200	20.30			
100	1/17/2017	420	19.54			
(Lower Mehrten)	10/28/2016	2000	22.26			
wieni ten)	9/28/2015	1400				
	12/21/2004	1100				
	7/12/2017	1800	2.94			
WPMW-3A	4/28/2017	1900	2.60			
	1/17/2017	1200	4.57			
(Lower Mehrten)	10/28/2016	2200	4.74			
wieni ten)	9/24/2015	2000				
	4/13/2011	2100				

Notes:

* Secondary MCL of 500 mg/L

Above MCL

NS Not Sampled

mg/L milligram per liter

Ft BTOC Feet Below Top of Casing

6. Results

For analysis purposes, the wells were separated into two geographic areas, the Southwestern Area (WPMW-5B, W77-B, and SVMW-2C) and the City of Lincoln Area (MW 3-2, MW-4, and WPMW-5B). Laboratory sample results for TDS were plotted with any available previous water quality results, to identify trends in TDS levels over time. **Tables 2 and 3** show available historic data and the four recent sampling results obtained during this study. Samples were not collected from well SVMW-2C during the Q1 2017 as muddy road conditions prevented access to the well location. **Figures 3 and 4** show plots of the water quality results for each well in these two areas.

Sample results for the Southwestern Area monitoring wells, all in the Lower Mehrten, showed:

- o TDS in all wells were above the secondary MCL of 500 mg/L and exhibit a flat to slightly downward trend.
- There was a slight dip in TDS of less than 100 mg/l in two of the monitoring wells (WPMW-5B and W-77) during the winter months, but thereafter returned to about the same concentration prior to sampling.

Sample results for monitoring wells in the Lincoln Area showed more highly variable conditions:

- The TDS concentrations were not always above the secondary MCL of 500 mg/L.
- o In the Lower Mehrten Aquifer (WPMW-3A and MW-4), TDS concentrations showed significant fluctuations, with a dip of about 1000-1500 mg/L in Winter 2017, both of which occurred at about the same timing as slight declines in TDS in the Southwest Area. Due to the wide variability of the results an overall trend cannot be determined with any confidence at this time.
- The Shallow Aquifer (MW 3-2), had an inverse trend to the other monitoring wells and had increased concentrations in Winter 2017. A slight overall increase trend may be occurring.

In all of the wells, except MW 3-2, the TDS values decreased in the Q1 2017 after the first rains reached the area and correlates well with rising groundwater levels. Therefore, an initial increase in groundwater levels (pressure) in the Lower Mehrten Aquifers may initially affect TDS, potentially reducing upwelling from the underlying Ione Formation. Thereafter, the TDS does not appear to have a direct correlation with groundwater levels, but this may be due to mixing of groundwater. MW 3-2 is the only Shallow Aquifer monitoring well and may explain why it did not respond in a similar manner as the other wells. TDS concentrations initially rose during Q1 2017 and then in Q2 2017 began to decline. The initial increase may be due to flushing of salts from the soils followed with subsequent declines due to rain water reaching the aquifers.

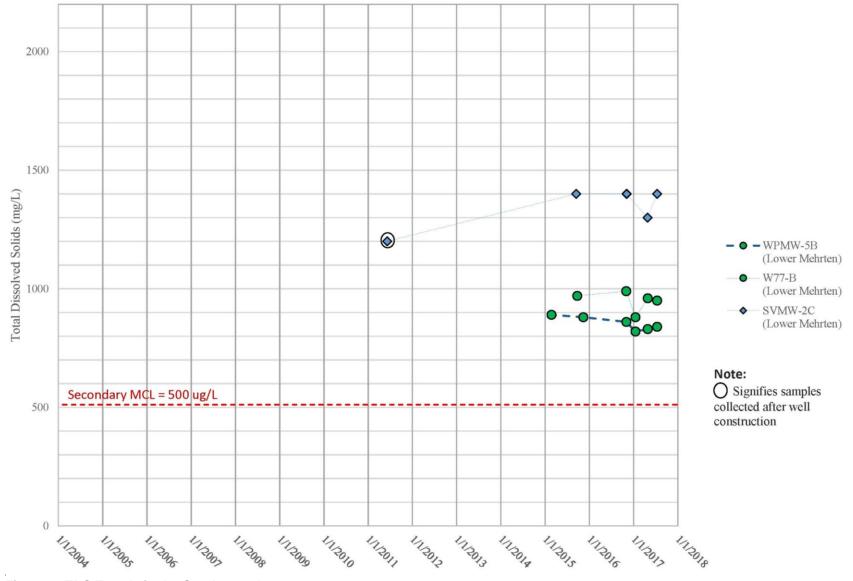


Figure 3: TDS Trends in the Southwest Area

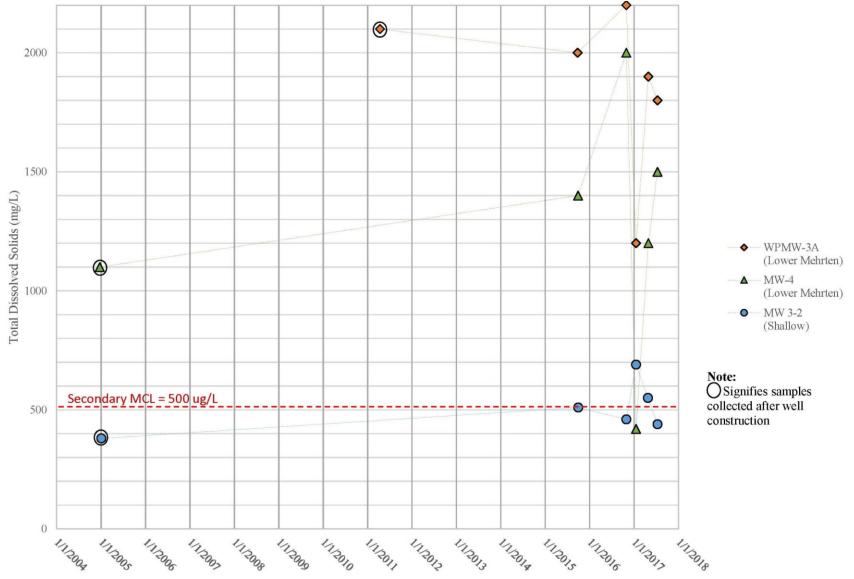


Figure 4: TDS Trends in the Lincoln Area

7. Conclusion and Recommendations

When identifying any long-term trends, care must be taken as trends are dependent upon multiple factors, including but not limited to:

- The time of year when the sample was collected, i.e. were samples collected in the spring or in the fall.
- The amount and timing of when the area received rain, i.e. samples collected early in the
 winter versus those collected later in the winter after significant amounts of rain have
 occurred.
- Previous year or years rain conditions. For example, the lack of rain, such as the drought years of 2012 through 2015, can allow salt to accumulate in the soils as small amounts of rain water or water applied for agricultural purposes evaporate and leave behind salts. During above average precipitation years these accumulated salts may be flushed and transported to the aquifers, resulting in high TDS concentrations. Over time, these high TDS concentrations will decrease and allow low TDS water (essentially rain) to reach the aquifers.
- Changes in groundwater levels, i.e. seasonal pumping or recharge from precipitation events, may affect the influence of brackish water from the Ione Formation.

Any of these factors could be affecting the variations in TDS concentrations in both the Lincoln Area and Southwest Area monitoring wells. With the current length of the dataset of one year, no long-term trends could be identified with certainty for either area.

Possible conclusions from the short-term trends indicate:

- For wells in the Lincoln Area:
 - Wells screened in the Lower Mehrten Aquifer may be influenced by an increase in groundwater levels resulting in a reduction of brackish water contribution from the underlying Ione Formation. During and immediately after major precipitation events, improved water quality may result from precipitation-induced recharge.
 - At MW 3-2, salts in the soils may have been initially flushed into the aquifer during initial precipitation events and with further rain events the recharged low TDS water may have reached the aquifer and improved the water quality. The TDS concentrations may have a slight upward trend.
- For wells in the Southwestern Area:
 - Slight improvement in TDS concentrations may result from reduced pumping or higher groundwater levels during winter months. It is possible that during the pumping season (late spring to early fall), pumping may induce brackish water from the deeper Ione Formation to move upwards into the Lower Mehrten

Aquifer. Higher groundwater levels during the winter months may reduce flow from the Ione Formation into the Lower Mehrten Aquifers.

While the high variability in data prohibited identifying long term trends in the Lincoln area wells, TDS concentrations appeared stable to slightly declining in the Southwest Area wells. It is recommended that further investigation of elevated levels be performed would include:

- Additional sampling and monitoring occur at both the Lincoln and Southwest Area wells.
 This will allow for greater clarity in analyzing data for long-term trends, for the source of
 the elevated TDS levels, and for determining whether management actions are needed to
 maintain suitable water quality.
- Define the potential extent of the elevated TDS levels in and north of Lincoln by a review of historic literature for wells with water quality data. Inquire with Placer County Environmental Health for water quality samples that have been performed for property owners.
- Define the principal aquifers affected by populating the Groundwater Well Inventory System with additional wells, construction details, and lithologic information from DWR well logs to assess the depth of the formations and aquifers. . Create east-west geologic profiles to show the relationship of the Ione Formation to the fresh water bearing aquifers and the well screen depths, TDS concentrations, and their relationship to the aquifers to show potential mechanism of how high TDS water is entering the fresh water aquifers.
- Plot TDS concentrations versus groundwater levels to assess any potential relationships.
- Collect water quality samples from additional wells in the area to further refine the extent of the elevated concentrations.

Management actions cannot be determined until the additional data is collected and analysis performed to better understand if long-term degradation is occurring and the mechanism for the degradation. Potential management options that may be developed during GSP development and implementation could include:

- Develop a local well construction ordinance to make sure wells are properly constructed to prevent migration of elevated TDS from the Ione Formation.
- Develop a program to identify and destroy abandoned wells to prevent migration of degraded water between aquifers.
- After a sufficient amount of water quality and water level data is collected, a relationship between water levels and water quality could be developed to identify a threshold where if maintained above this level could limit the migration of poor quality water into production aquifers.
- Develop a groundwater mound (recharge) or depression (pumping) that may control the migration of the elevated TDS water into the subbasin.

8. References

GEI Consultants, Inc. 2017a. Baseline Groundwater Quality Study (samples collected Fall 2015). Prepared for the Western Placer County Groundwater Management Plan Group.

GEI Consultants, Inc. 2017b. Memorandum: Water Quality Trends Assessment. Prepared for the Western Placer County Groundwater Management Program – Year 9.

Attachment A: Purge Logs					

GFI	
\cup L	Consultants

Page No. ____ of ___

2446	C ala.
Proj. Name Macer (O. Varer	Samples Proj. No. 1610374
Date 7/13/17	Task No. 2.2
Weather 850 F Survey	3.50

	, , , outlier	1		
Well ID W77-B	SWL (ft btoc)		T.D. (ft btoc)	1_
Water Column (ft)	x 0.16	gpf= 78,896	x 3 = 230.688	
Casing Volumes: 2" = 0.16 gpf	4'' = 0.65 gpf	Comon x 2, S GPM:	: (S gall wo min x2	. 5 gpm . 25 gall

Time	Purge Vol.	Flow Rate	DTW	Temp.	pН	Cond.	Com	ments
	Gallons	GPM	ft btoc	°C		uhmos/cm	Turb	DO
12:04	137 water	2.5						
12:10	15	2.5		23.7	7.17	1446	0.72	0,34
12:20	40	2.5		23.6	7.19	1434	0.41	0.43
12:30	65	2.5	- 24	23.9	7.21	1394	1.02	0.59
1240	90	2.5		24.1	7.17	1428	0.38	1.07
1250	115	2.5		23,9	7.22	1449	0,20	0,31
15:21	Yourel Stap purp							
1252	Start Open	0 2,5						
1302	142.5	2.5		23,9	7,20	1451	0.15	0,49
1312	167.5	2,5		23.9	7.15	1455	0.24	0,93
13:22	192.5	2.5		23.8	7,16	1451	0.16	0,27
13:37	217.5	2.5		23,8	7.19	1453	0,13	0,28
1342	242,5	2.5	12	23.8	7,23	1434	0,17	0,52
24-	CALLANT	21 1121						

1345 Collect Samples

Time	Volume	Bottle Type	Quantity	Filtration	Preservation	Appearance	Comments
1345	16	Plastic		N	A.M	ober	
1345	500 mL	- K		10	NA	clear	
1345	900 ml	1.	.)	Y	HNO3	dear	
		-			7		
	35						
							2- X

				2.4	
Methods	1 00 8		**		
Decon Equipment:	Chair	0×			
Pumping Equipment:	Grands	is Redifio	2		 29.00
Disposal of Discharged Wa	ater:	Ground	- 2		
Comments:		N			

Well ID W77-13

PURGE LOG Page No. ___ of ___ of ___ Placer County Grant Finded Proj. Name Water Sumples Proj. No. 16

Proj. No. 1610374 Task No. 2.2

Date 4/27 /17

Weather 60, 2 nmy

T.D. (ft btoc) 604

I.D. (in) 2___

DTW (ft bloc) 109,48
237 min prize vol

Time	Purge Vol.	Flow Rate	Temp.	pН	Cond.	Com	ments
	Gallons	GPM	°C	_	uhmos/cm	Turb	Po
1142	15+ L	later.					
1145	9	3.3	21,4	7.31	1424	0,83	1,36
1153	35,7	3.3	21.8	7.18	1435	2,08	0.62
1158	52.2	33333	22.2	7,25	1428	0.86	0,68
1204	72	3,3	22.7	7.29	1412	0.22	0,52
1214	105	3,3		7,30	1462	0.75	0.60
12 24	138	3,2	23,1	7.27	1449	0,29	0.53
1231	161.1	3.3	23.0	7.28	1448	0.23	0.53
1239	187.5	3.3	22.9	7.25	1451	0,40	0.39
1249	220.5	3.3	23,1	7,36	1430	0,31	0.60
1259	253,5	3,2	23.0	7.34	1431	0.33	0.59
12:00	(diect	Samples					
							, "

Comments:	
	- 0.4.

PURGE LOG

Page No. ____ of ____

Proj. Name Placer County
Date 1/16/17
Weather 50°, Sunny

Proj. No. 1610374
Task No. 2, 2

Well ID W77-B

DTW (ft btoc) 111.76

T.D. (ft btoc) 604

I.D. (in) ______

604-111.76=492,24 x0,16=78,8 x3 = 236,3 min purge Vol

Cond. pН Comments Time Purge Vol. Flow Rate Temp. Do H °C uhmos/cm Turb **GPM** Gallons Kt water 3 14 16 3 0.57 0.64 19,8 1470 6 7.36 1418 3 0,34 1458 422 20,7 1.01 18 7,28 3 21.2 1448 2.08 0,36 1425 27 7.29 7,29 1453 1,14 0.28 3 14.28 36 21,4 0,25 7,26 0.63 1432 48 21.6 1454 1451 0.89 0.25 7.30 1436 60 21.6 2 7.31 1.14 0.24 1440 21.9 1450 72 0,21 3 7.33 2,10 22,0 1494 14 44 84 2,61 7.32 0.62 3 1488 22.0 102 1450 0.26 7.32 1476 1.10 1456 120 3 22.0 3 0.28 0.62 22,2 7,32 1502 138 1466 0.27 3 0,51 1507 153 22,3 7.32 1465 0.31 22.2 7,32 1449 0.55 1516 171 0.63 1459 22,1 7.3 0.54 1526 201 3 22,2 7.31 1454 0,43 0.29 1533 222 0,47 1454 0.23 22,3 7,31 1539 240 Collect Samples 1545 1600 Decon Eduip

Comments:		
		_
	D. D. Ho	

10/31/16	Arrive	77B	15 D	TW=	14.13	- rump	@ 130		ip	
	杨丁丁	5=6041								
604-	114.13	489.1	37×0.16	, = 78,3	7 x 3	3			1	
oo F, we	reast	Min	Purge	= 235	.14 gal					
-9:4	begi	- Pur	_y e		<u>.</u>	*				
Plan	Rafe =	1gal	60 sec	- 2.3	20	- 8 T L L L				
		205	Inis		Mark					
ime	Vol	Flow min	Tour	لام	cond	A series	, ma	4 1	1 .	
946	6.9	2.3	20.8	PH 7.05	Total Control of the	Turb NTU	100-6	Nc		
949	13.8		-		1299	1 . 7	2.16	fui		
952	19.8	2.3	21.7	7.14	1307	.27	. 80	Sul	cv	
956	31.8	3.0	21.4	7.15	1305	45	.67		4-0-	
958	37.8	3.0	21.3	7.17		1,77	.68			
1009		2.7	21.6	7.20	1300	. 50	.73	250		
	67.5		22.0	7.21	1302	.26	.92			
1014		2.7	22.1	7.23	1319	,27	.74	Bubbl	es preser	+
1017	89.1	27	22.5	7.20	1415	.31	.71			
1019	94.5	2.7	22.5	7.21	1435	,27	. 83			
1076	102.6	/·	22,7	7.21	1425	.57	.34			<u> </u>
1025	110.7		11.5	721	1410	0,83	.44			
1028	118.8	2.7	22.6	7.71	1419	0.55	.30			
1030	126.9	2.7	22.7	7.20	1408	0.67	.28			
1033	135	2.7	22.8	7.20	1404	0.44	.30			- 3

	tec	Ne	DO	Turb	Cond	0M	Temp	Flaw	Vol	10 [17/10
			.36	0.51	1408	7.20	22.9	27	143, 1	10:36
		72.7	.42	0,44	1409	7.21	22.8		151.2	10:39
			0.35	0.51	1407	7.21	22.8	2.7	159.3	10:42
			0.29	0.41	1401	7.20	22.9	2.7	167,4	10:45
			0.32	0.49	1400	7.21	22.7	2.7	175.5	1048
			0.32	0.35	1349	7.21	22.8	2,7	183.6	1051
		-	0.38	0.34	140)	7.20	22 8	2.7	1917	1054
			0.30	0.41	1400	7.20	22,8	2.7	200,4	1057
			0.42	0.25	1348	7.21	22.7	2.7	208.1	1100
			0.44	0.31	1395	7.21	22.8	2.7	216.2	1103
			0.27	0,27	1400	7.20	22,7	2.7	224.3	1106
			0,35	0.31	1396	7.21	22.7	2.7		1111
			0.32	0.32	1392	7.20	22.7	2.7	243.2	1113
								sample	collect	1120
1 12									Decon	1125
								0 400		13.9
			100					*		
						East,				
	PET									

Page No. ____ of ____

Proj. Name Muces	County	Nates Samolos
Date 4/28/17		1,0

Proj. No. 1610374 Task No. 2-2

Weather 65°F, shiny

SWL (ft btoc) <u>20.30</u> T.D. (ft btoc) <u>25</u>

Well ID MW-4 Water Column (ft) 4.7 $\times 0.16$ $\times 0.$

Time	Purge Vol.	Flow Rate	DTW	Temp.	pН	Cond.	Con	mments
	Gallons	GPM	ft btoc	°C		uhmos/cm	Turb	Do
1109	0.25	Bailer		19.3	6.83	1895	55,2	2,24
1112	0.50		1 /	17.7	6.97	1383	266	2.29
1114	0:75		1	17.8	6.78	1995	170	1,78
1115	1.0		1	17.6	6.86	1611	320	2.12
1117	12,25		1)	17.4	6.86	1780	375	2,12
1120	1.50		- 1	17.6	6.85	1999	404	2,09
1122	1.75	V	\wedge	17.4	6.28	1957	575	1.85
1124	2.00	A		17.5	6,89	2109	377	1,92
1126	2,25		1	17,5	(0.89	2139	396	2.10
1130	Collect	Samples						
			1					
			1					300 A
							Sulfin	smell

Time	Volume	Bottle Type	Quantity	Filtration	Preservation	Appearance	Comments
1130	500 mL	plastic		7	1	Turbid	
1130	16	dastic	1	N	N	Turbid	
		1	7				
	245	===		==			
							10 K

* 1	
	9
2 1/	
	N 16

PURGE LOG

Page No. ____ of ____

Proj. Name Placer	County
Date 1/17/17	(6)

Proj. No. 161 03 74
Task No. 2.2

Well ID MW-4

Weather 46° , party cloudy

DTW (ft btoc) 19.54Min purge vol = 2.6 galI.D. (in) _2___

Time	Purge Vol.	Flow Rate	Temp.	pН	Cond.	Comments	Do
	Gallons	GPM	°C		uhmos/cm	Turb	
1126	0,75	Bailer	16.8	6.79	682	250	1.80
1129	1.0		17.8	6.72	672	237	1.35
1131	1.25		18.0	6-72	678	283	1,28
11361	1,50		17.9	6.70	683	284	1.12
1136	1.75		18.0	6.71	677	347	1.17
1138	2.00		181	6.71	680	341	1.22
1140	2,25		18.1	672	678	398	1.39
1142	2.50		18.1	6.73	681	398	1.48
1144	2.75		18.0	6-73	687	510	1.51
1150	Coluct	Camples					
					v v		
				1,			
				W.			
	1						
				 			
	1			1			

Comments:	cultur smell, roots in well casing	
	Bv D, +(0	-

Kou	ts on	tran.	punder	and					
w	fer :	ainder	<u> </u>			l. —			
25-2	2.26 =	2.74	× 0.16 =	0.44 ×	3 2 1.3				
						-			
-									
						7			
	21.1	5.		- 14	Conad	Turb			
ne	2-	50%	Temp 19.1	646	Co	39.3			
11	·15501	179	10. 9	167	2863				
	17 001	195	19.0	6.50	7834	177	J.		
15	1-	717	19.0	(60	2766	200			
718	7 1,5	YAK OZ	19.4	A.50	7924	358			
	3	رهم داما	19.7	6.61	2748	674)			
	7-			-0.07	1.6				
776	collect	Suc-	He C						

Page No. of

Proj. Name Placer	Co	Weiter	Sumples
Date 7/12/17			20

Proj. No. 1610374

Weather 83, Sunny

Task No. 2.2

SWL (ft btoc) 22,30

T.D. (ft btoc) 25

Water Column (ft) 2.7

Well ID MW-4

x 0.16

 $gpf = 0.432 \quad x3 = 1.3$

Casing Volumes: 2" = 0.16 gpf

4" = 0.65 gpf

OR = Out of

							E-st.	Kang
Time	Purge Vol.	Flow Rate	DTW	Temp.	pН	Cond.	Con	nments
	Gallons	GPM	ft btoc	°C		uhmos/cm	turb	100-20
1049	0.25	Bailer	1	19,4	6.39	2546	79,0	1170
1052	0.5		\ /	18.6	6.48	2576	824	1.78
055	0.75			18.5	6.47	2575	617	1.14
1057	1.0		V	18,4	6-51	2494	OR	1.87
100	1,25		Λ	18,4	6-59	2568	OR	1.90
100	HC III		-11					
1103	1,5		I	18.6	6.56	2545	781	1.01
1110	Collect	Samples						
		,	1					
			/					V
	5		ES					1
			(V	100				

Time	Volume	Bottle Type	Quantity	Filtration	Preservation	Appearance	Comments
11 10	1 1	Plastic	1	2	NA	Dark grey	
1110	500 mL	N	1	N	NA	lt.	
						9	
	-						
							10 X

Methods					Ŧ1	,c		24	
Decon Equipment:									
Pumping Equipment:	Bailer	/							E
Disposal of Discharg	ed Water:	Grea	md					*	
Comments: Sulfu	v smell			well	casing				
					0				
						D	Lle		

CEI	
ULI	Consultants

Page No. _ of _ /

Proj. Name Placer	County Water Samples	Proj. N
Date 7/12/17	Same	Task N
Weather 750 Sur	in-/	

Well ID _ MW 3-2

Well ID $\frac{MW \ 3-2}{}$ SWL (ft btoc) $\frac{57.93}{}$ T.D. (ft btoc) $\frac{75.}{}$ Water Column (ft) $\frac{17.17}{}$ x $\frac{0.16}{}$ gpf = $\frac{2.75}{}$ x $3 = \frac{8.7}{}$

Casing Volumes 2" = 0.16 gpf 4" = 0.65 gpf

Time	Purge Vol.	Flow Rate	DTW	Temp.	pН	Cond.	Com	ments mg
	Gallons	GPM	ft btoc	°C		uhmos/cm	Turb	DO Z
9!24		Bailer	\	21.5	6.46	739	6.29	2,19
932	2			21.3	6.58	737	328	2.81
940	3			21.3	6,68	734	226	1.70
9416	41		The state of the s	21,2	6.70	725	228	13,09
951	5		V	21.2	6.76	705	747	7.47
956	6		1	21.3	6,76	698	335	2.77
1002	7		Λ	321.4	6.74	693	448	4,44
1009	8.25		Λ	21,41	6.841	686	403	3.34
1015	Collect (Jamples						
			1					
			7, 2					

Time	Volume	Bottle Type	Quantity	Filtration	Preservation	Appearance	Comments
1015	1 L	Plastic	1	N	N/A	Clear	
1015	500 mL	10		N	N/A	clear	
		J. J.			5		
	1				w i		
							111

Ni ni					
Methods					
con Equipment: nping Equipment: Posal of Discharged Water: Ground					
Pumping Equipment: Bailes	<i>r</i>		Liv.		290
Disposal of Discharged Water:					
Comments:					
*		5	2	1/	
e g		By	Hennis	H6	

Page No. _ of _ (

	lacer (
Proj. Name	Water	Samples	
	,		-

Proj. No. 1610374

Date 4/20/17
Weather 60°F, clear

Task No. 2.2

Well ID _ M W 3-2

Well ID $\cancel{M} \cancel{W} \cancel{5}-2$ SWL (ft btoc) $\cancel{54.51}$ T.D. (ft btoc) $\cancel{75}$ Water Column (ft) $\cancel{20.49}$ x $\cancel{.16}$ gpf = $\cancel{3.3}$ x 3 = $\cancel{9.8}$ gcs.

Casing Volumes 2'' = 0.16 gpf 4'' = 0.65 gpf

Time	Purge Vol.	Flow Rate	DTW	Temp.	pН	Cond.	Com	ments
	Gallons	GPM	ft btoc	°C		uhmos/cm	Turb	Do
930	Pailer		1					
835				20.8	7.29	875	3.14	1.87
940	2		\	20,9	7,18	963	14.6	1.69
945	3	1	1/	20.7	7.26	964	87.4	2,38
750	4		V	20.6	7.27	958	142	7,28
954	5		1	20.8	7.27	943	340	2.92
1000	6	l X	/\	20.7	7.2 7	926	380	2,72
1005	7	/\	/ \	21.2	7,11	906	339	3.12
1010	8		1-1	20.6	7.20	882	341	7.72
1014	q			20.0	7.24	867	299	3,06
1021	10		1	20.0	7.39	361	200	2.30
1022	Collect	Sum (P)						

Time	Volume	Bottle Type	Quantity	Filtration	Preservation	Appearance	Comments
1022	500 ml	Massic		2	2		
1011	11	Plastic	1	N	N		(
					41 6		
	18						
							10.

Methods	
Decon Equipment:	
Pumping Equipment:	
Disposal of Discharged Water:	
Comments:	
	D. D.Ha

Well ID MW 3-2

PURGE LOG

Page No. ____ of ____

Proj. Name Placev	County
Date 1/17/17	1

Proj. No. 16 | 03 74

Task No. 2.2

Weather 39°, Partly Clarcky

DTW (ft btoc) 57,21

T.D. (ft btoc) 75

I.D. (in) _______

Min Rivge = 8.5 gal

Time	Purge Vol. Gallons	Flow Rate GPM	Temp.	pН	Cond. uhmos/cm	Comments Turb	DU Z
944	0.5	Bailer	15.5	6.97	646	4.78	2.42
950	1.0		17,9	6.93	625	4.07	2.17
954	1.5		19.1	6.95	740	13.5	2.58
954	2.0		19.6	6.98	888	29.3	2.67
10.04	3.0		19.7	6.99	1132	96.1	2.56
1010	4.0		19.4	7.02	1161	157	2.94
1016	5.0		19,4	6.99	1159	195	3.19
1022	6.0		19.3	6.99	1133	177	2.96
1028	7.0		19.3	6.98	1113	136	3,07
1035	8.0		19.4	7.03	1102	17-4	3.67
1041	9.0	#	19.4	7.03	1083	221	3.75
1045	Collect	Sam pl	0 <				
				W Ti			
						A	
		•					- 7

Comments:	# 1	
	By D. Ho	

2	10/20	Ai	SON -	West	4 MIN						1
	MIN-	45 5	1 0	12:00	4 MW						
	Laure	a Hydr	raclos	ec 6 1	2:45						
1	door	5 220	1 and	230'	10						
		te @ 1									1000
		well a								W	
~~	- Contin	0,0011				¥.					
	MW 2	-2 @	13:0	5							
i i	MIN	=57.8	51 of	v ~				1			
y'n	Out	ine to	ausdu	certition	JZ 5719')						
wege 8.	2 gal	7	3 10 10 10	1	2 57,19				. 1000		-
ime	Vol	00	Temp	at c	cond		Turb (N	TU			
3:30	0.2500	16,2%	20.8	6.69	695		-				
1336	1 99	30,5	12	6.76	699	4	4.0				
1347	2.5	41.490	21.1	6.87	705	ĺ	273				
354	4.2	32.5%	2).	6.84	704		206				
		32.3%		6.82			141				
403	6.0	341.0%	21.1	6.82	700		190				
408	3.0°	40.2	21.0	6.88	6941		158				
413	80	35,4	21.0	6.84	690	i	145			<u> </u>	_
418	9.0	40.0	21	6.84	686		150			1	
yid c	ollect g	imples									
	14										
				}	1						
								l t			R

GFI	
ULI	Consultants

Page No. _ of _ _ _

Proj. Name Places	Co	Sundes
Date 7/13/17		

Proj. No. 1610374
Task No. 2.2

	U	Consult	ants	Date 7/	13/17		Task No	2.2		
	91			Weather_	740, sur	-u-1				
		NPC MW-		SWL (ft b	toc) 115,2	7	T.D. (ft	btoc) 650		
	Water Col	lumn (ft) <u>53</u>	4.73	x 0.16	gpf=	88.55	T.D. (ft \sqrt{x} 3 = $\sqrt{2}$ \sqrt{y}	6704		×
	Casing Vo	plumes $2"=0$.	16 gpf) 4'	" = 0.65 gp	f DI	Sec Got	= 2GP/	M.		
3.3	x) mila:	23.1 gall 1+	Previous pu	ruk volu	Mac)	1 mm	12 E			=-
3.3	Time	Purge Vol.	Flow Rate	DTW	Temp.	pH pH	Cond.	Com	ments].
3.3				1	1			Com	ments Do Z]
3.3		Purge Vol.	Flow Rate	DTW	Temp.		Cond.		ments Do Z	2
3.3		Purge Vol. Gallons	Flow Rate	DTW	Temp.		Cond.		ments Do Z	26
3.3		Purge Vol. Gallons [St Water	Flow Rate	DTW	Temp.		Cond.		ments Do Z	28
3.3		Purge Vol. Gallons [St Water	Flow Rate GPM Q	DTW	Temp.		Cond. uhmos/cm		ments Do Z	200
3.3	Time 9116 9119 9122	Purge Vol. Gallons [St Water	Flow Rate GPM Q	DTW	Temp.		Cond. uhmos/cm	0.56 y	DO 7	2008

149 1.54 .56 1446 63 1.07 1.641 411.

Sample Inventory

Time	Volume	Bottle Type	Quantity	Filtration	Preservation	Appearance	Comments
1042	16	Pashic		N	N/A	clear	
1042	500 ml	3.5	1	2	NA	clear	
1042	500ml	P .	0 1	Y	HNOZ	clear	
						W.	
							10 4

Methods			5	
Decon Equipment:	Liquinox	Ringe		
Pumping Equipment:	Grund Fos	Redifio 2	200	16(0)
Disposal of Discharged	Water: Giv	and		
Comments:				

D. Ho / Sydney Nye

GFI	
\cup	Consultants

Page No. 2 of 2

Well DWPCMW-5B			SWL (ft btoc)			T.D. (ft btoc)		
Water Co	lumn (ft)		x	gpf =		x 3 =	146	
Casing V	olumes: 2" = (0.16 gpf 4	$\frac{1}{1} = 0.65 \text{ gpt}$	f	* 81		9 kg	
Time	Purge Vol. Gallons	Flow Rate GPM	DTW ft btoc	Temp. °C	pН	Cond.	Commen Turb D	its
10:40	274.6	3.3	\	22.1	7.64	1459		46
10.42	Collect	sample	5			7-1-2-1		
							×	
		<u></u>	<u> </u>		1			
		1	$- \wedge -$					-
							-	
			/					
		İ		1				
			- A				·	
							, , , , , , , , , , , , , , , , , , , ,	
Sample In	iventory							
Sample In	Volume	Bottle Type	Quantity	Filtration	Preservation	Appearance	Commen	ts
			Quantity	Filtration	Preservation	Appearance	Commen	ts
			Quantity	Filtration	Preservation	Appearance	Commen	ts
			Quantity	Filtration	Preservation	Appearance	Commen	ts
			Quantity	Filtration	Preservation	Appearance	Commen	ts
			Quantity	Filtration	Preservation	Appearance		ts
			Quantity	Filtration	Preservation	Appearance	Commen	is
Sample Ir			Quantity	Filtration	Preservation	Appearance		is
			Quantity	Filtration	Preservation	Appearance		is
Time	Volume		Quantity	Filtration	Preservation	Appearance		is
Time Methods Decon Eq	Volume		Quantity	Filtration	Preservation	Appearance		ts

J:\Environmental Science Associates\Projects\DWR Engineering and Environmental Services\TO 14 Working\Field Forms\Groundwater Sampling Record_Blank

PURGE LOG Page No. ___ of ___

Proj. Name Placer County Water us Date 4/27/17
Weather 55°F, Partly Cloudy

Proj. No. 16103 74

Task No. 2.7

Well ID WPMW-5B

DTW (ft btoc) 111,08

T.D. (ft btoc) <u>650</u>

I.D. (in) ______

Min Purge Vol = 259 gal

Time	Purge Vol.	Flow Rate	Temp.	pН	uhmos/cm 1449 3,07 62 1404 0,19 60 1411 0,91 60 1328 0,60 17 1257 0,97 0,97 0,97 0,97 0,97 0,97 0,97 0,9	ments w	
	Gallons	GPM	°C	1	uhmos/cm	Turb	00
8.49	1st we	iter					
21,52	9.6	3,2	18.6	7.67		3.07	1.71
82.5	29.8	3.2	18.9	7.62	1404		1.11
9:03	44.6	3.7	19.0	7.60		0.91	0.51
9:10	67	3,2	20.0	7.70		0.60	1.09
9:19	95.8	3.2	20,4	7.77	1257	0.97	0.91
9:26	118,2	3,2	21.0	7.77		6,20	0,83
9:33	140.6	3.2	21.2	7.77	1401	4,33	1,00
9:39	159.8	3.2	21.3	7.77			1.05
9:47	185.4 214.2 249.4 265.4 Collect	3,2	21,3	7.77			0.77
9:56	214.2	3,2	21.61	7.73	1426		1,80
10.07	249,4	3.2	21,6	7.75			0.90
10:12	265,4	3,2	2116	7.75	1443	0.73	0.75
10:12	Collect a	amples					
				1			
			1				

Comments:	Dayton	708-0858	
	-	By Dillo	

PURGE LOG Page No. ____ of ____

Proj. Name Placer (0 Date 1/16/17
Weather ()vev cast, 410°F

Proj. No. 1610374

Task No. 2.2

Well ID WPMW-5B

DTW (ft btoc) 113,75'

T.D. (ft btoc) 650'

I.D. (in) 2 650-113.75 = 536.25 × 0.16 = 85.8 × 3 = 257.4 min purge

1st water

Time	Purge Vol. Gallons	Flow Rate GPM	Temp. °C	pН	Cond. uhmos/cm	Comments Turb	Do To
9:37	0,200	0.750 golie					
9.39	5.2	2.6	16.3	7.57	1499	8.3	1.65
9:42	8,16	2.72	17.1	7.51	1495	2,19	0.76
9:45	16.32	2.72	18,1	7.54	1465	1,91	0.77
9:47	21.72	2.72	18.6	7.59	1445	0.54	0.51
9:50	29.88	2.72	18.7	7.59	1442	0,73	0.51
9:56	46.2	2.72	18,9	7.62	1427	0.61	0.53
1003	65,24	2.72	19,6	7.67	1377	0.60	0.37
10 09	81.56	2.72	20.2	7.72	1307	0,34	0.48
10 14	95.16	2.72	20.0	7.73	1301	0.50	0.49
1025	125,08	2.72	20.6	7.72	1416	5.65	5 0.3
1033	146.84	2.72	20.8	7-72	1441	4.53	0.30
1040	165.88	2.72	20.6	7.72	1451	4.11	0.72
1047	184,92	2.72	20,7	7.72	1455	3.89	0.29
1053	201.24	272	20,7	7.73	1462	4,02	0.21
1100	220,28	272	20,9	7,72	1470	3,98	0.21
1109	244,76	2.72	20.8	7.72	1468	3,70	0.19
1116	263.8	2.72	20.9	7.72	1477	3.21	0.41
1120	Collect S	amples					
1130	Decon E	Equipment	/				
1210		Transdu			91		
							_

Comments:	Sulfur smell		
	-		
		By D. Ho	

TD=6			51°F,	sunny	clear	Pum	00 1	35' dep	
DIM-	116.39								
		Mil	1 Purge	2 407	gal	-			
Begin 0	9:12	لا							
,									-
×	V r l			5.0	0 1	= 1.7		1 14	
Time 9 1994	Vol	Flow	Temp	Do	Cond	PH	Turb	Whos	3 -
	36	30	17.3	76.0	1222	7,28	3,34	1.00	
917	15	3.0	18,0	2.26	1246	7,25	5.32	slight su	litir
920	24	3.0	18,5	1.05	1243	7.43	1.94		
922	30	3,0	18.8	1.14	1239	7.49	3.84		
924	36	3,0	18.7	0.80	1248	7.48	1.37		
926	42	3,0	18.9	0.60	1234	+ 7.52	1.03		
924	51	3,0	19.4	0163	1229	7.55	0.71		
932	60	3,0	19.6	0.83	1222	7.58	0,57		
936	72	3,0	20.0	0.62	1210	7.60	3.94		
938	78	3.0	20.3	0,49	1201	7.62	0,46		
939	81	3.0	20.6	0.51	1190	7.63	0,33		
944	96	3.0	20.6	0.59	1190	7.65	1.72		
946	102	3.0	20.7	0,52	1183	7.65	0.46		
949	111	3,0	20.9	0.53	1151	7.67	4.5%		
952	120	3,0	20,9	0.48	1236	7.69	3.75		
959	141	3.0	21.2	0.62	1401	7.66	23,7		
1003	153	3,0	21.4	0.61	1409	7.67	17.7		
1011	177	3.0	21.3	0:56	1400	7.66	ابار ب		R

24 Time	VUI	Flow	Temp	DO	cond		PH	turb		
1016	192	3.0	21,5	0:53	1412		7.65	8.62		
1021	207	30	21.7	0.55	1416		7.66	9.81		
1028	228	3.0	21.9	0,54	1418		7.66	9.0		
1035	249	3.0	21.8	0.63	1422	Å,	765	6.21		
1040	264	3,0	21.8	0.56	1415	Ą	7.6	14.5		
1045	279	3.0	21.8	0.61	1422		7,66	6.93		
1050	294	3.0	21.7	0.56	1424		7.65	5.51		
1055	2300	3.0	21.9	0,57	1422		7.65	t _e .(60		
1100	324	3.0	21,7	0.45	1425		7.65	7.00		
1105	339		21.9	0.44	1421		7.64	45.13		
1110	354		21,7	0.51	1423		7.64	4.06		
1115	369	3,0	21.7	0.42	1428	1	7.64	5.34		
1120	3 84	3.0	21.8	0.58	1427	1	7.64	4.95		
11253	99 3399	3,0	21.8	0,48	1427		7.64	8,19		
1-12-52	The state of the s		45							2
1130	414	3,00	21.8	0.43	1428		7.64	5.77		
1133	Collect	Sample								
1140		Equi						×.		
						Å				
						¥		The state of the s		
						Ų			8.4	
					(4: 14: T	-				
										Retorn

GROUNDWATER SAMPLING RECORD

Page No. ____ of ____

Proj. Name Daster County water
Date 7-13-207 (Samples
Weather 96°F, Sunny
SWL (ft btoc) 133.99

Proj. No. 1610374 Task No. 2.2

 $gpf = \frac{85.7616 \times 3}{257.2848}$ T.D. (ft btoc)

Water Column (ft) SS6.01 x 0.16

Well ID SVMW 2C

Casing Volumes: 2" = 0.16 gpf

4'' = 0.65 gpf

Time	Purge Vol.	Flow Rate	DTW	Temp.	pН	Cond.	Com	ments
15:40	Gallons	GPM	ft btoc	°C		uhmos/cm	Turb	DO
\$40	1st water	3						
A STATE OF THE STA	5	3		23,4	7.05	2000	0.35	2.80
1555	45	3		22.9	7.29	2003	0.40	0,90
1605	75	3		,23.0	7.36	1953	0.36	0.84
1615	105	3		1213, O	239	1826	0.29	0.89
1625	135	3		23.3	7.36	2049	0.51	10.77
1635	165	3		23.3	1.38	5028	6:17	1.01
1645	198	3		23.5	7.43	2061	0.15	0.82
1655	225	3		24.	7.34	2076	0.14	1.81
1705	255	3		23.3	7.43	2047	0,44	1.21
1710	270	3		23.2	7.45	2082	0,44	15,7
DIFL	Collect	Sampl	es					ow :
		9	75					

Sample Inventory

Time	Volume	Bottle Type	Quantity	Filtration	Preservation	Appearance	Comments
710	11	Mashic	1	2	NA	clear	
710	500mL	1.1	Í	2	N/A	clear	
1710	500 mL	11	- 1	У	HNOg	clear	
	19.5					(C	
					5		10. 4

Methods						
Decon Equipment:	Liquino	×				
Pumping Equipment:	Brund	For Re	difloz.			*1
Disposal of Discharged W	ater:	Ground			2	
Comments:						

By D. Ho Sidney Nye

1545

Well ID SVMW-2C

PURGE LOG

Page No. _ f of f

Proj. Name Mara County Great	Funded
Date 4/26/17 water	C. d. Proj. No. 1610374
Date 4/26/17 Water	Task No. 2.2

Water Column (ft) _____

Weather 66°F, cloudy

DTW (ft btoc) 131,94

T.D. (ft btoc) 670

I.D. (in) 2

Min Purge Vol = 258 301

Time	Purge Vol.	Flow Rate	DTW	Temp.	pН	Cond.		ments
	Gallons	GPM	ft btoc	°C		uhmos/cm	Juro	DQ
1534	1 St Water	V2.5						
1536	5	2.5		21.1	7 17	196	0.59	18,0
1540	15	2.5		21.2	7.18	1903	0.34	0.48
1543	22,5	7.5		71.2	7.21	1888	0,31	0,51
1545	27.5	2.5		21,3	7.23	1090	0,22	0,43
1551	Flow sho	pred						
1553	flow.	legio a	sain					
1555	46.9	2.2		2114	7.11	1847	6.40	1.10
1602	62.3	2.2		21.7	7.18	1826	7.81	0.67
1607	73,3	2,2		21.8	7.21	1782	7.51	0.60
1617	05.3	2.2		21.8	7.27	1767	5.08	1.04
1627	7.3	2.2		22.1	7.31	1980	20,1	1.18
1637	139,3	2.2		22.0	7.40	1990	31.9	1,47
1647	101.3	7.2		21.3	7,43	1988	1.82	1.24
16 58	185,5	2.2		22,2	7,38	1997	12.8	0.48
1712	219.1	2,4		22:2	1:3:1	2000	61.1	0.416
1721	240,7	2,4	-	22.3	7.52	2026	12.4	0,45
1731	264.7	2.4		22,3	7.54	2021	3.87	038
1721	Collect	Samples						
		0						
¥								
						*		
								1

Comments:	
	By Detlo

42,5

38	SVML	-2C	@ li:	15					
	5251								
	135,0								
			03 4 0	16 = 80	,44 ×3	-= 256) 9	al min	ana-	
oum (00 16	o' de	eo -			: 0		1 0	
1			129	1135		1.			
Flow	Rase -	7,0	gal						
			MIN			S _e e			
Time	Vol	Flow	Temp	DO	cond	PH	Turb		
1139	8	2.0	21.4	8,50	1640	7.03	12.4	fi	
1141	16	2,0	21.8	2,12	1676	7.02	4.53		
1144	22	2.0	21.9	1,58	1675	7.03	3,64		
1146	26	2.0	22.1	1.45	1678	7.05	2.39		
1151	36	2.0	22.2	1.49	1672	7,08	1,39		
1156	46	2,0	22,2	1.55	1677	7.10	0.69		
1202	58	2,0	22.3	1.53	1671	7.12	0,83		
1206	66	2.0	22.5	1.54	1665	7.16	0153		
1212	78	2.0	22.5	1.56	1673	7.17	0.67		
1218	90	2.0	22.6	1:55	1728	7.22	0.35		
1223	100	2.0	22,7	117	1844	7.28	1.39		
1230	114	2.0	22.8	1,30	1906	7.32	0.73		
1236	126	2.0	22.8	1,35	1921	7.35	1,42		
1242	138	2,0	22.9	1,38	1930	7.39	0.81		
1249	15.2	2	22.7	1.41	1931	7.41	1.09		
1258	170	2	23.0	1,40	1936	7.44	0,25		
1304	182	2	22,9	1,30	1937	7.46	0.62	-	RE

	Vol	Flow	Temp	Do	cond	PH	Timb			
Tim 1310	194	2	22.9	1,25	1940	7.45	0,45			
1316	206	2	22.9	0.71	1940	7.47	0,66			
1324	222	2	22.9	1,41	1942	. 7.47	0.38			
1329	232	2	22.9		1941	7.47	0,37		Ly.	
335	244	2	22.9	1.45	1943	7.48	0.56			
346	256	2	22,9	1.42	1942	7.40	0,52			
250		_								
	Callect	3C. 10=0	(-			VA.				
350	Collect of Decon	Form	in							
,,0	JECOVI	COM								
		L								
			-	1				The second		
			-							
			1		-					
	-									
-										
							(a			
							(A			
							4			

Attachment B: Laboratory Analytical Results

A6K0257 11/15/2016

Invoice: A628192

David Fairman GEI Consultants 2868 Prospect Park Drive, Suite 400 Rancho Cordova, CA 95670

RE: Report for A6K0257 WPC WQ sampling Fall 2016

Dear David Fairman,

Thank you for using BSK Associates for your analytical testing needs. In the following pages, you will find the test results for the samples submitted to our laboratory on 11/2/2016. The results have been approved for release by our Laboratory Director as indicated by the authorizing signature below.

The samples were analyzed for the test(s) indicated on the Chain of Custody (see attached) and the results relate only to the samples analyzed. BSK certifies that the testing was performed in accordance with the quality system requirements specified in the 2009 TNI Standard. Any deviations from this standard or from the method requirements for each test procedure performed will be annotated alongside the analytical result or noted in the Case Narrative. Unless otherwise noted, the sample results are reported on an "as received" basis.

If additional clarification of any information is required, please contact your Project Manager, Adam Trevarrow, at (800) 877-8310 or (559) 497-2888 x116.

Thanks again for using BSK Associates. We value your business and appreciate your loyalty.

Sincerely,

Adam Trevarrow, Project Manager

Accredited in Accordance with NELAP ORELAP #4021

WPC WQ sampling Fall 2016

Case Narrative

Project and Report Details Invoice Details

Client:GEI ConsultantsInvoice To: GEI ConsultantsReport To:David FairmanInvoice Attn: Richard ShatzProject #:Placer CountyProject PO#: 1610374

Received: 11/02/2016 - 10:30 **Report Due:** 11/16/2016

Sample Receipt Conditions

Cooler: Default Cooler Containers Intact

Temperature on Receipt °C: 1.3

COC/Labels Agree

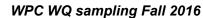
Received On Wet Ice

Received On Wet Ice Packing Material - Other

Sample(s) were received in temperature range.

Initial receipt at BSK-SAC

Data Qualifiers


The following qualifiers have been applied to one or more analytical results:

DP1.1 Sample Duplicate RPD exceeded method acceptance criteria.

Report Distribution

Recipient(s)	Report Format	CC:	
Richard Shatz	FINAL.RPT		
David Fairman	FINAL.RPT		
Sandy St. Hilaire	FINAL.RPT		

Certificate of Analysis

Sample ID: A6K0257-01
Sampled By: Dennis Ho
Sampled By: Ground Water

Sample Description: MW 3-2 Sample Type: Grab

BSK Associates Fresno General Chemistry

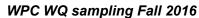
Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed	Qual
Alkalinity as CaCO3	SM 2320B	170	3.0	mg/L	1	A615205	11/03/16	11/03/16	
Bicarbonate as CaCO3	SM 2320B	170	3.0	mg/L	1	A615205	11/03/16	11/03/16	
Carbonate as CaCO3	SM 2320B	ND	3.0	mg/L	1	A615205	11/03/16	11/03/16	
Hydroxide as CaCO3	SM 2320B	ND	3.0	mg/L	1	A615205	11/03/16	11/03/16	
Chloride	EPA 300.0	59	1.0	mg/L	1	A615137	11/02/16	11/02/16	
Conductivity @ 25C	SM 2510B	690	1.0	umhos/cm	1	A615205	11/03/16	11/03/16	
Fluoride	EPA 300.0	0.26	0.10	mg/L	1	A615137	11/02/16	11/02/16	
pH (1)	SM 4500-H+ B	7.6		pH Units	1	A615205	11/03/16	11/03/16	
pH Temperature in °C		24.8							
Sulfate as SO4	EPA 300.0	36	1.0	mg/L	1	A615137	11/02/16	11/02/16	
Total Dissolved Solids	SM 2540C	460	5.0	mg/L	1	A615179	11/03/16	11/10/16	

					RL				
Analyte	Method	Result	RL	Units	Mult	Batch	Prepared	Analyzed	Qual
Calcium - Dissolved (1)	EPA 200.7	48	0.10	mg/L	1	A615507	11/10/16	11/11/16	
Hardness as CaCO3, Dissolved	SM 2340B	280	0.41	mg/L					
Hardness as CaCO3, Dissolved	SM 2340B	280	0.41	mg/L					
Magnesium - Dissolved (1)	EPA 200.7	39	0.10	mg/L	1	A615507	11/10/16	11/11/16	
Potassium - Dissolved (1)	EPA 200.7	ND	2.0	mg/L	1	A615507	11/10/16	11/11/16	
Sodium - Dissolved (1)	EPA 200.7	38	1.0	mg/L	1	A615507	11/10/16	11/11/16	

Certificate of Analysis

 Sample ID: A6K0257-02
 Sample Date - Time: 10/28/16 - 15:35

 Sampled By: Dennis Ho
 Matrix: Ground Water


Sample Description: MW 4 Sample Type: Grab

BSK Associates Fresno General Chemistry

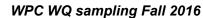
Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed Qual
Alkalinity as CaCO3	SM 2320B	410	3.0	mg/L	1	A615205	11/03/16	11/03/16
Bicarbonate as CaCO3	SM 2320B	410	3.0	mg/L	1	A615205	11/03/16	11/03/16
Carbonate as CaCO3	SM 2320B	ND	3.0	mg/L	1	A615205	11/03/16	11/03/16
Hydroxide as CaCO3	SM 2320B	ND	3.0	mg/L	1	A615205	11/03/16	11/03/16
Chloride	EPA 300.0	590	5.0	mg/L	5	A615375	11/08/16	11/08/16
Conductivity @ 25C	SM 2510B	2700	1.0	umhos/cm	1	A615205	11/03/16	11/03/16
Fluoride	EPA 300.0	0.19	0.10	mg/L	1	A615137	11/02/16	11/02/16
pH (1)	SM 4500-H+ B	7.6		pH Units	1	A615205	11/03/16	11/03/16
pH Temperature in °C		24.9						
Sulfate as SO4	EPA 300.0	77	1.0	mg/L	1	A615137	11/02/16	11/02/16
Total Dissolved Solids	SM 2540C	2000	5.0	mg/L	1	A615179	11/03/16	11/10/16

					RL				
Analyte	Method	Result	RL	Units	Mult	Batch	Prepared	Analyzed	Qual
Calcium - Dissolved (1)	EPA 200.7	120	0.10	mg/L	1	A615507	11/10/16	11/11/16	
Hardness as CaCO3, Dissolved	SM 2340B	710	0.41	mg/L					
Hardness as CaCO3, Dissolved	SM 2340B	710	0.41	mg/L					
Magnesium - Dissolved (1)	EPA 200.7	97	0.10	mg/L	1	A615507	11/10/16	11/11/16	
Potassium - Dissolved (1)	EPA 200.7	ND	2.0	mg/L	1	A615507	11/10/16	11/11/16	
Sodium - Dissolved (1)	EPA 200.7	320	1.0	mg/L	1	A615507	11/10/16	11/11/16	

Certificate of Analysis

 Sample ID: A6K0257-03
 Sample Date - Time: 10/28/16 - 16:50

 Sampled By: Dennis Ho
 Matrix: Ground Water


Sample Description: WPMW- 3A Sample Type: Grab

BSK Associates Fresno General Chemistry

Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed Qual
Alkalinity as CaCO3	SM 2320B	110	3.0	mg/L	1	A615205	11/03/16	11/03/16
Bicarbonate as CaCO3	SM 2320B	110	3.0	mg/L	1	A615205	11/03/16	11/03/16
Carbonate as CaCO3	SM 2320B	ND	3.0	mg/L	1	A615205	11/03/16	11/03/16
Hydroxide as CaCO3	SM 2320B	ND	3.0	mg/L	1	A615205	11/03/16	11/03/16
Chloride	EPA 300.0	740	10	mg/L	10	A615375	11/08/16	11/08/16
Conductivity @ 25C	SM 2510B	3000	1.0	umhos/cm	1	A615205	11/03/16	11/03/16
Fluoride	EPA 300.0	0.24	0.10	mg/L	1	A615137	11/02/16	11/02/16
pH (1)	SM 4500-H+ B	7.7		pH Units	1	A615205	11/03/16	11/03/16
pH Temperature in °C		24.9						
Sulfate as SO4	EPA 300.0	200	1.0	mg/L	1	A615137	11/02/16	11/02/16
Total Dissolved Solids	SM 2540C	2200	5.0	mg/L	1	A615179	11/03/16	11/10/16

					RL				
Analyte	Method	Result	RL	Units	Mult	Batch	Prepared	Analyzed	Qual
Calcium - Dissolved (1)	EPA 200.7	170	0.10	mg/L	1	A615507	11/10/16	11/11/16	
Hardness as CaCO3, Dissolved	SM 2340B	600	0.41	mg/L					
Hardness as CaCO3, Dissolved	SM 2340B	600	0.41	mg/L					
Magnesium - Dissolved (1)	EPA 200.7	44	0.10	mg/L	1	A615507	11/10/16	11/11/16	
Potassium - Dissolved (1)	EPA 200.7	4.5	2.0	mg/L	1	A615507	11/10/16	11/11/16	
Sodium - Dissolved (1)	EPA 200.7	390	1.0	mg/L	1	A615507	11/10/16	11/11/16	

Certificate of Analysis

Sample ID: A6K0257-04
Sampled By: Dennis Ho
Sample Description: W77 - B

Matrix: Ground Water

Sample Type: Grab

Sample Date - Time: 10/31/16 - 11:30

BSK Associates Fresno General Chemistry

Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed Qual
Alkalinity as CaCO3	SM 2320B	110	3.0	mg/L	1	A615205	11/03/16	11/03/16
Bicarbonate as CaCO3	SM 2320B	110	3.0	mg/L	1	A615205	11/03/16	11/03/16
Carbonate as CaCO3	SM 2320B	ND	3.0	mg/L	1	A615205	11/03/16	11/03/16
Hydroxide as CaCO3	SM 2320B	ND	3.0	mg/L	1	A615205	11/03/16	11/03/16
Chloride	EPA 300.0	380	1.0	mg/L	1	A615137	11/02/16	11/02/16
Conductivity @ 25C	SM 2510B	1400	1.0	umhos/cm	1	A615205	11/03/16	11/03/16
Fluoride	EPA 300.0	0.14	0.10	mg/L	1	A615137	11/02/16	11/02/16
pH (1)	SM 4500-H+ B	7.6		pH Units	1	A615205	11/03/16	11/03/16
pH Temperature in °C		25.0						
Sulfate as SO4	EPA 300.0	ND	1.0	mg/L	1	A615137	11/02/16	11/02/16
Total Dissolved Solids	SM 2540C	990	5.0	mg/L	1	A615179	11/03/16	11/10/16

					RL				
Analyte	Method	Result	RL	Units	Mult	Batch	Prepared	Analyzed	Qual
Calcium - Dissolved (1)	EPA 200.7	75	0.10	mg/L	1	A615507	11/10/16	11/11/16	
Hardness as CaCO3, Dissolved	SM 2340B	330	0.41	mg/L					
Hardness as CaCO3, Dissolved	SM 2340B	330	0.41	mg/L					
Magnesium - Dissolved (1)	EPA 200.7	35	0.10	mg/L	1	A615507	11/10/16	11/11/16	
Potassium - Dissolved (1)	EPA 200.7	4.6	2.0	mg/L	1	A615507	11/10/16	11/11/16	
Sodium - Dissolved (1)	EPA 200.7	150	1.0	mg/L	1	A615507	11/10/16	11/11/16	

Analyte	Result	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Date Analyzed Qual
		EPA 3	00.0 - Q	uality Co	ntrol					
Batch: A615137				=						Prepared: 11/2/201
Prep Method: Method Specific Prepara	ation									Analyst: INI
Blank (A615137-BLK1)										
Chloride	ND	1.0	mg/L							11/02/16
Fluoride	ND	0.10	mg/L							11/02/16
Sulfate as SO4	ND	1.0	mg/L							11/02/16
Blank Spike (A615137-BS1)										
Chloride	100	1.0	mg/L	100		101	90-110			11/02/16
Fluoride	1.0	0.10	mg/L	1.0		103	90-110			11/02/16
Sulfate as SO4	100	1.0	mg/L	100		101	90-110			11/02/16
Blank Spike Dup (A615137-BSD1)										
Chloride	100	1.0	mg/L	100		101	90-110	0	20	11/02/16
Fluoride	1.0	0.10	mg/L	1.0		103	90-110	0	10	11/02/16
Sulfate as SO4	100	1.0	mg/L	100		101	90-110	0	20	11/02/16
Matrix Spike (A615137-MS1), Source: A	A6K0263-02									
Chloride	120	1.0	mg/L	50	73	94	80-120			11/02/16
Fluoride Sulfate as SO4	0.64 57	0.10 1.0	mg/L mg/L	0.50 50	0.15 8.3	98 98	80-120 80-120			11/02/16 11/02/16
Suilate as SO4	51	1.0	IIIg/L	50	0.3	90	00-120			11/02/10
Matrix Spike (A615137-MS2), Source: A			_							
Chloride	81	1.0	mg/L	50	33 ND	97	80-120			11/02/16
Fluoride Sulfate as SO4	0.51 48	0.10 1.0	mg/L mg/L	0.50 50	ND ND	102 96	80-120 80-120			11/02/16 11/02/16
Matala Oction Day (A045407 MOD4) Oc	A 01/0000 00									
Matrix Spike Dup (A615137-MSD1), So		4.0		50	70	00	00.400	4	20	44/00/40
Chloride Fluoride	120 0.65	1.0 0.10	mg/L mg/L	50 0.50	73 0.15	96 100	80-120 80-120	1	20 10	11/02/16 11/02/16
Sulfate as SO4	58	1.0	mg/L	50	8.3	99	80-120	1	20	11/02/16
Matrix Spike Dup (A615137-MSD2), So	urca: A6K0207-02									
Chloride	82	1.0	mg/L	50	33	98	80-120	1	20	11/02/16
Fluoride	0.52	0.10	mg/L	0.50	ND	103	80-120	1	10	11/02/16
Sulfate as SO4	49	1.0	mg/L	50	ND	97	80-120	1	20	11/02/16
		EPA 30	00.0 - Q	uality Co	ntrol					
Batch: A615375				•						Prepared: 11/8/201
Prep Method: Method Specific Prepara	ation									Analyst: INF
Blank (A615375-BLK1)										
Chloride	ND	1.0	mg/L							11/08/16
Blank Spike (A615375-BS1)										
Chloride	100	1.0	mg/L	100		100	90-110			11/08/16
Matrix Spike (A615375-MS1), Source: A	A6K0451-09									
Matrix Spike (A615375-MS1), Source: A Chloride	54	1.0	mg/L	50	4.3	99	80-120			11/08/16
			ū							
A6K0257 FINAL 11152016 1443 Printed: 11/15/2016										
			.BSKAs							Page 7 of 15

	General	Chemi	stry Qu	ality C	ontrol Re	eport					
Analyte	Result	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Date Analyzed	Qual
		EPA 3	00.0 - Qւ	uality Co	ntrol						
Batch: A615375 Prep Method: Method Specific Prepar	ation										d: 11/8/2016 Analyst: INF
Matrix Spike (A615375-MS2), Source: A	A6K0811-02										
Chloride	54	1.0	mg/L	50	5.5	97	80-120			11/08/16	
Matrix Spike Dup (A615375-MSD1), So	urce: A6K0451-09										
Chloride	55	1.0	mg/L	50	4.3	100	80-120	1	20	11/08/16	
Matrix Spike Dup (A615375-MSD2), So	urce: A6K0811-02										
Chloride	56	1.0	mg/L	50	5.5	100	80-120	2	20	11/08/16	
		SM 23	20B - Qı	ualitv Co	ntrol						
Batch: A615205	ation										ed: 11/3/2016
Prep Method: Method Specific Prepar	ation									A	nalyst: CEG
Blank (A615205-BLK1)	ND	2.5								44/00/45	
Alkalinity as CaCO3	ND	3.0	mg/L							11/03/16	
Bicarbonate as CaCO3 Carbonate as CaCO3	ND	3.0	mg/L							11/03/16	
Hydroxide as CaCO3	ND ND	3.0 3.0	mg/L mg/L							11/03/16 11/03/16	
			3								
Blank Spike (A615205-BS1) Alkalinity as CaCO3	97	3.0	mg/L	100		97	80-120			11/03/16	
·	.	0.0	9-	.00		0.	00 .20				
Blank Spike Dup (A615205-BSD1)			_								
Alkalinity as CaCO3	95	3.0	mg/L	100		95	80-120	1	20	11/03/16	
Duplicate (A615205-DUP1), Source: A6	SJ3381-03										
Alkalinity as CaCO3	130	3.0	mg/L		140			12	10	11/03/16	DP1.1
Bicarbonate as CaCO3	130	3.0	mg/L		140			12	10	11/03/16	DP1.1
Carbonate as CaCO3	ND	3.0	mg/L		ND				10	11/03/16	
Hydroxide as CaCO3	ND	3.0	mg/L		ND				10	11/03/16	
		SM 25	10B - Qւ	uality Co	ntrol						
Batch: A615205	-0									•	d: 11/3/2016
Prep Method: Method Specific Prepar	ation									A	nalyst: CEG
Blank Spike (A615205-BS1)											
Conductivity @ 25C	1400	1.0	umhos/c m	1400		98	90-110			11/03/16	
Blank Spike Dup (A615205-BSD1)											
Conductivity @ 25C	1400	1.0	umhos/c	1400		97	90-110	1		11/03/16	
			m								
Duplicate (A615205-DUP1), Source: A6	SJ3381-03										
Conductivity @ 25C	290	1.0	umhos/c		290			0	20	11/03/16	
			m								

A6K0257 FINAL 11152016 1443

Printed: 11/15/2016

Result	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Date Analyzed Qual
	SM 25	40C - Qւ	uality Co	ntrol					
									Prepared: 11/3/2016
ration									Analyst: DEH/F
ND	5.0	mg/L							11/10/16
990	5.0	mg/L	1000		99	70-130			11/10/16
A6K0056-01									
1600	5.0	mg/L		1600			1	20	11/10/16
A6K0228-01									
200	5.0	mg/L		200			3	20	11/10/16
	SM 4500	-H+ B -	Quality C	Control					
									Prepared: 11/3/2016
ration									Analyst: CEG
	990 A6K0056-01 1600 A6K0228-01 200	SM 25. Aration ND 5.0 990 5.0 A6K0056-01 1600 5.0 A6K0228-01 200 5.0 SM 4500	SM 2540C - Quaration ND 5.0 mg/L 990 5.0 mg/L A6K0056-01 1600 5.0 mg/L A6K0228-01 200 5.0 mg/L SM 4500-H+ B -	Result RL Units Level	Result RL Units Level Result SM 2540C - Quality Control	Result RL Units Level Result %REC	Result RL Units Level Result %REC Limits	Result RL Units Level Result %REC Limits RPD	Result RL Units Level Result %REC Limits RPD Limit SM 2540C - Quality Control Aration ND 5.0 mg/L 990 5.0 mg/L 1000 99 70-130 A6K0056-01 1600 5.0 mg/L 1600 1 20 A6K0228-01 200 5.0 mg/L 200 3 20 SM 4500-H+ B - Quality Control

BSK Associates Fresno Metals Quality Control Report

				201111101	-						
Ameliate	Danill	-	11	Spike	Source	0/ DE0	%REC	DDD	RPD	Date	Ovel
Analyte	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Analyzed	Qual
		EPA 20	00.7 - Q	uality Co	ntrol						
Batch: A615507										Prepared	: 11/10/2016
Prep Method: Filtration - Metals										Aı	nalyst: MDS
Plank (A645507 PL K2)											
Blank (A615507-BLK2)	ND	0.10	ma/l							11/11/16	
Calcium - Dissolved (1) Magnesium - Dissolved (1)	ND ND	0.10 0.10	mg/L mg/L							11/11/16	
Potassium - Dissolved (1)	ND ND	2.0	-							11/11/16	
` '			mg/L								
Sodium - Dissolved (1)	ND	1.0	mg/L							11/11/16	
Blank Spike (A615507-BS2)											
Calcium - Dissolved (1)	9.5	0.10	mg/L	10		95	85-115			11/11/16	
Magnesium - Dissolved (1)	10	0.10	mg/L	10		102	85-115			11/11/16	
Potassium - Dissolved (1)	10	2.0	mg/L	10		100	85-115			11/11/16	
Sodium - Dissolved (1)	10	1.0	mg/L	10		101	85-115			11/11/16	
Blank Spike Dup (A615507-BSD2)											
Calcium - Dissolved (1)	9.5	0.10	mg/L	10		95	85-115	1	20	11/11/16	
Magnesium - Dissolved (1)	10	0.10	mg/L	10		104	85-115	1	20	11/11/16	
Potassium - Dissolved (1)	10	2.0	mg/L	10		101	85-115	2	20	11/11/16	
Sodium - Dissolved (1)	10	1.0	mg/L	10		101	85-115	2	20	11/11/16	
Sodium - Dissolved (1)	10	1.0	IIIg/L	10		102	65-115	2	20	11/11/10	
Matrix Spike (A615507-MS3), Source: A6	K0257-01										
Calcium - Dissolved (1)	59	0.10	mg/L	10	48	111	70-130			11/11/16	
Magnesium - Dissolved (1)	50	0.10	mg/L	10	39	113	70-130			11/11/16	
Potassium - Dissolved (1)	11	2.0	mg/L	10	ND	109	70-130			11/11/16	
Sodium - Dissolved (1)	49	1.0	mg/L	10	38	115	70-130			11/11/16	
Matrix Spike (A615507-MS4), Source: A6	K0611-03										
Calcium - Dissolved (1)	23	0.10	mg/L	10	14	91	70-130			11/11/16	
Magnesium - Dissolved (1)	17	0.10	mg/L	10	8.1	93	70-130			11/11/16	
Potassium - Dissolved (1)	12	2.0	mg/L	10	2.0	99	70-130			11/11/16	
Sodium - Dissolved (1)	22	1.0	mg/L	10	12	99	70-130			11/11/16	
Matrix Spike Dup (A615507-MSD3), Source	ca: A6K0257-01										
Calcium - Dissolved (1)	56	0.10	mg/L	10	48	81	70-130	5	20	11/11/16	
Magnesium - Dissolved (1)											
` ' '	48 10	0.10	mg/L	10 10	39 ND	89 104	70-130 70-130	5 5	20	11/11/16	
Potassium - Dissolved (1)	10 47	2.0	mg/L	10 10	ND 20	104		5	20	11/11/16	
Sodium - Dissolved (1)	47	1.0	mg/L	10	38	92	70-130	5	20	11/11/16	
Matrix Spike Dup (A615507-MSD4), Source	ce: A6K0611-03										
Calcium - Dissolved (1)	23	0.10	mg/L	10	14	90	70-130	0	20	11/11/16	
Magnesium - Dissolved (1)	17	0.10	mg/L	10	8.1	92	70-130	1	20	11/11/16	
Potassium - Dissolved (1)	12	2.0	mg/L	10	2.0	99	70-130	0	20	11/11/16	
Sodium - Dissolved (1)	22	1.0	mg/L	10	12	97	70-130	1	20	11/11/16	
· <i>,</i>			-								

Certificate of Analysis

Notes:

- The Chain of Custody document and Sample Integrity Sheet are part of the analytical report.
- Any remaining sample(s) for testing will be disposed of according to BSK's sample retention policy unless other arrangements are made in advance.
- All positive results for EPA Methods 504.1 and 524.2 require the analysis of a Field Reagent Blank (FRB) to confirm that the results are not a contamination error from field sampling steps. If Field Reagent Blanks were not submitted with the samples, this method requirement has not been performed.
- Samples collected by BSK Analytical Laboratories were collected in accordance with the BSK Sampling and Collection Standard Operating Procedures.
- J-value is equivalent to DNQ (Detected, not quantified) which is a trace value. A trace value is an analyte detected between the MDL and the laboratory reporting limit. This result is of an unknown data quality and is only qualitative (estimated). Baseline noise, calibration curve extrapolation below the lowest calibrator, method blank detections, and integration artifacts can all produce apparent DNQ values, which contribute to the un-reliability of these values.
- · (1) Residual chlorine and pH analysis have a 15 minute holding time for both drinking and waste water samples as defined by the EPA and 40 CFR 136. Waste water and ground water (monitoring well) samples must be field filtered to meet the 15 minute holding time for dissolved metals.
- · Summations of analytes (i.e. Total Trihalomethanes) may appear to add individual amounts incorrectly, due to rounding of analyte values occurring before or after the total value is calculated, as well as rounding of the total value.
- RL Multiplier is the factor used to adjust the reporting limit (RL) due to variations in sample preparation procedures and dilutions required for matrix interferences.
- Due to the subjective nature of the Threshold Odor Method, all characterizations of the detected odor are the opinion of the panel of analysts. The characterizations can be found in Standard Methods 2170B Figure 2170:1.
- The MCLs provided in this report (if applicable) represent the primary MCLs for that analyte.

Definitions

mg/L:	Milligrams/Liter (ppm)	MDL:	Method Detection Limit	MDA95:	Min. Detected Activity
mg/Kg:	Milligrams/Kilogram (ppm)	RL:	Reporting Limit: DL x Dilution	MPN:	Most Probable Number
μg/L:	Micrograms/Liter (ppb)	ND:	None Detected at RL	CFU:	Colony Forming Unit
μg/Kg:	Micrograms/Kilogram (ppb)	pCi/L:	Picocuries per Liter	Absent:	Less than 1 CFU/100mLs
%:	Percent Recovered (surrogates)	RL Mult:	RL Multiplier	Present:	1 or more CFU/100mLs
NR:	Non-Reportable	MCL:	Maximum Contaminant Limit		

Please see the individual Subcontract Lab's report for applicable certifications.

WA100008-008

BSK is not accredited under the NELAP program for the following parameters: **NA**

Certifications: Please refer to our website for a copy of our Accredited Fields of Testing under each certification.

Fresno			
State of California - ELAP	1180	State of Hawaii	4021
State of Nevada	CA000792016-1	State of Oregon - NELAP	4021
EPA - UCMR3	CA00079	State of Washington	C997-16
Sacramento		_	
State of California - ELAP	2435		
San Bernardino			
State of California - ELAP	2993	State of Oregon - NELAP	4119-001

A6K0257 FINAL 11152016 1443

Printed: 11/15/2016

Vancouver

State of Oregon - NELAP

State of Washington

C824-16

11022016

geico8314

Turnaround: Standard

Due Date: 11/16/2016

GEI Consultants

Add General Mirvaral Package & Muside, Maramess, Mirvare N

Sample Containers, Preservation and Approximate Detection Limits Analytical Parameters, Test Methods, Holding Times, For Groundwater Quality Samples

(on sulfants.

	ATTENTO	NA SINION	SAMPLE CON AINER	AINER		MOMINIA		SAMPLE BOTTLES	
raiailletei	METHOD	TIME	מטורה - זייה	3120/301	マスログロスを発してい	LIMIT	Cost		
General Minerals			:]]]] - +]		! ! !
Akalinity	EPA 310.1	14 Days	Plastic	1 Liter	Cool to 4 °C	5.0 mg/L		CHANGE to I v 300 ml Plastic White Cap	1
Bicarbonate								non-preserved for Minerals	
Calcium	EPA 200.7	6 Months	Plastic	1 Liter	Cool to 4 °C	1.0 mg/L		1x1- plastic no preservation	
Chloride	EPA 300.0	28 Days	Plastic	1 Liter	Cool to 4 °C	1.0 mg/L		(anions/TDS/ MABAS)	
Fluoride - A	EPA 300.0	28 Days	Plastic	1 Liter	Cool to 4 °C	0.1 mg/L		TRANSP to 19050 to Dispris Box Day	†
Hardness - AX	SM2340B	6 Months	Plastic	1 Liter	Cool to 4 °C	1.0 mg/L		w/HNO3 for held filtered metals	
Magnesium 🕶	EPA 200.7	6 Months	Plastic	1 Liter	Cool to 4 °C	1.0 mg/L	235	500 ml plastic can be used - 250 ml is easier)	
MBAS	SM5540C	48 Hours	Plastic	1-Liter	Cool to 4 °C		pncluded	(w/ NO3 if filtered in the field)	
Nitrate - Add	EPA 300.0	48 Hours	Plastic	1 Liter	Cool to 4 °C		Boron)	(non-preserved if lab filteres)	
рН	EPA 150.1	Immediate	Plastic	1 Liter	Cool to 4 °C	None Required	-		
Potassium	EPA 200.7	6 Months	Plastic	1 Liter	Cool to 4 °C	1.0 mg/L		NOTE: It samples are collected on a PRIDAY	
Sodium	EPA 200.7	6 Months	Plastic	1 Liter	Cool to 4 °C	1.0 mg/L		needed for the Wireste sample that will be	_
Specific Conductance (EC)	SM 2510-B	28 Days	Plastic	1 Liter	Cool to 4 °C	10 umhos/cm		subcontracted	_
Sulfate	EPA 300.0	28 Days	Plastic	1 Liter	Cool to 4 °C	0.50 mg/L			_
Total Dissolved Solids (TDS)	SM 2450-C	7 Days	Plastic	1 Liter	Cool to 4 °C	1.0 mg/L			
General Physical			7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7						
Color	SM2120B	48 Hours	Amber Glass	250 ml.	Cool to 4 °C			7-10-2014 - per Cathy, Gen Phy will not be analyzed on	-
Oder	?	~>	2	.2	?	?		any of these MW samples	
Turbidity	EPA 180.1	48 Hours	Amber Glass	250 ml.	Cool to 4 °C	0.5 NTU			
Metals							1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		
Drinking Water Metals (dissolved)							inlcuded	see metals above	
TI.V.Zn)	EPA 200 Series	6 Months	Plastic	200 mL	HNO3, cool to 4 °C	Varies	above	(will use same bottle)	
Boron									. =
Hexavalent Chromium	EPA 218.6	7 days	Plastic	125 mL.	NH3 + NH4 (pH 9)	1 ug/L	\$75.00	250 ml p w/HN4 + buffer	<u> </u>
Isotopes									
Tritium	¢	6 Months	Plastic	200 mL	Cool to 4 °C		\$125.00	1x500 AG bottle - no preservation	
Isotopes 16 Of 18 0 and 1 H/2 H	¢	6 Months	Plastic	200 mL	Cool to 4 °C		150	1x500 mL plastic - no preservation	
Other									
Perchlorate	EPA 314.0	14 Days	Plastic	1 Liter	Cool to 4 °C		\$45.00	from GM bottle	
VOCs	EPA 524 2	14 Days	Glass	3x 40ml	Cool to 4 °C		\$80	3x40 ml VOA w/ HCl	1
Notes:						Each	\$435.00		

All other groups of analyses are assembled from groups published by CLS. Actual analysis groups from BSK need to be confirmed There will be an additional \$30 RUSH subcontract fee for the nitrates on samples submitted on Friday.

NOTE #2: If samples are collected on Friday an additional 1x.250 mill plastic white cap (non-preserved) bottle will need to be collected for subcontracting to meet the Nitrate holding time

↑

11/02/2016

10

Sample Integrity

Page \ of BSK Bottles: (Yes) Was temperature within range? Were correct contains proservatives Yes 9No NA Yes No NA Chemistry ≤ 6°C Micro < 10°C received for the tests requested? If samples were taken today, is there evidence Were there bubbles in the VOA vials? Yes No (AA) Yes No (NA (Volatiles Only) that chilling has begun? (Yes) (es) No Did all bottles arrive unbroken and intact? No Was a sufficient amount of sample received? Yes Did all bottle labels agree with COC? Do samples have a hold time <72 hours? No No ∕Yes Was sodium thiosulfate added to CN sample(s) Was PM notified of discrepancies? NA) Yes No AA Yes No until chlorine was no longer present? PM: By/Time: 250ml(A) 500ml(B) 1Liter(C) 40ml VOA(V) Checks Passed? Bacti Na₂S₂O₃ None (P)White Cap 10 Cr6 (P) Lt. Green Label/Blue Cap NH4OH(NH4)2SO4 DW CI. pH > 8 Cr6 (P) Pink Label/Blue Cap Υ NH4OH(NH4)2SO4 **WW** pH 9.3-9.7 Ν Cr6 (P) Black Label/Blue Cap NH40H(NH4)2S04 7199 Y N pH 9.0-9.5 ***24 HOUR HOLD TIME*** HNO3 (P) Red Cap or HCI (P) Purple Cap/Lt. Blue Laber H₂SO₄ (P) or (AG) Yellow Cap/Label pH < 2 Y N NaOH (P) Green Cap CI, pH >10 Υ Ν NaOH + ZnAc (P) pH > 9 Y N Dissolved Oxygen 300ml (g) None (AG) 608/8081/8082, 625, 632/8321, 8151, 8270 **Bottles Received** HCI (AG)Lt. Blue Label O&G, Diesel Ascorbic, EDTA, KH2Ct (AG)Pink Label 525 Na₂O₃S 250mL (AG)^{Neon Green Label} 515 Na₂S₂O₃ 1 Liter (Brown P) 549 Na₂S₂O₃ (AG)^{Blue} Label 548, THM, 524 Na₂S₂O₃ (CG) Blue Label 504, 505, 547 Na₂S₂O₃ + MCAA (CG)^{Orange Label} 531 pH < 3 Y N NH₄Cl (AG)^{Purple Label} 552 EDA (AG)Brown Label DBPs HCL (CG) 524.2,BTEX,Gas, MTBE, 8260/624 Buffer pH 4 (CG) H₃PO₄ (CG)^{Salmon Label} Other: Asbestos 1Liter Plastic w/ Foil Low Level Hg / Metals Double Baggie Bottled Water 250mL / 500mL / 1 Liter Clear Glass Soil Tube Brass / Steel / Plastic Tedlar Bag / Plastic Bag Container Preservative Date/Time/Initials Container Preservative Date/Time/Initials -41/1/3, ā SP Plec. samples out IF HT. Holiers Red cap for MN 4 was fiter Comments Coff Samples unp. check with Glern before the cons/preserving WA 112-11 Labeled by: _____ @ ____ Labels checked by: _____ @ _____ RUSH Paged by:

A6K0830 11/21/2016

Invoice: A628651

Richard Shatz GEI Consultants 2868 Prospect Park Drive, Suite 400 Rancho Cordova, CA 95670

RE: Report for A6K0830 Western Placer County GW Recharge

Dear Richard Shatz,

Thank you for using BSK Associates for your analytical testing needs. In the following pages, you will find the test results for the samples submitted to our laboratory on 11/8/2016. The results have been approved for release by our Laboratory Director as indicated by the authorizing signature below.

The samples were analyzed for the test(s) indicated on the Chain of Custody (see attached) and the results relate only to the samples analyzed. BSK certifies that the testing was performed in accordance with the quality system requirements specified in the 2009 TNI Standard. Any deviations from this standard or from the method requirements for each test procedure performed will be annotated alongside the analytical result or noted in the Case Narrative. Unless otherwise noted, the sample results are reported on an "as received" basis.

If additional clarification of any information is required, please contact your Project Manager, Adam Trevarrow, at (800) 877-8310 or (559) 497-2888 x116.

Thanks again for using BSK Associates. We value your business and appreciate your loyalty.

Sincerely,

Adam Trevarrow, Project Manager

Accredited in Accordance with NELAP ORELAP #4021

Page 1 of 13

Western Placer County GW Recharge

Case Narrative

Project and Report Details Invoice Details

Client:GEI ConsultantsInvoice To: GEI ConsultantsReport To:Richard ShatzInvoice Attn: Sandy St. Hilaire

Project #: WPC WQ Sampling Fall 2016, Placer County Project PO#: 1610374

Received: 11/08/2016 - 10:30

Report Due: 11/22/2016

Sample Receipt Conditions

Cooler: Default Cooler Containers Intact

Temperature on Receipt °C: 0.0 COC/Labels Agree
Received On Wet Ice

Received On Wet Ice Packing Material - Other

Sample(s) were received in temperature range.

Initial receipt at BSK-SAC

Data Qualifiers

The following qualifiers have been applied to one or more analytical results:

HT1.0 Holding time exceeded. Sample was received at the lab past holding time.

MS1.0 Matrix spike recoveries exceed control limits.

MS1.4 Matrix spike recovery data unreliable due to significant parent sample concentration relative to fortification level (>4x).

Report Distribution

Recipient(s)	Report Format	CC:	
Richard Shatz	FINAL.RPT		
David Fairman	FINAL.RPT		
Sandy St. Hilaire	FINAL.RPT		

Western Placer County GW Recharge

WPC WQ Sampling Fall 2016, Placer County

Certificate of Analysis

Sample ID: A6K0830-01
Sampled By: Dennis Ho
Sample Description: WPMW-5B

Sample Date - Time: 11/02/16 - 11:33

Matrix: Ground Water

Sample Type: Grab

BSK Associates Fresno General Chemistry

Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed	Qual
Alkalinity as CaCO3	SM 2320B	110	3.0	mg/L	1	A615393	11/08/16	11/08/16	
Bicarbonate as CaCO3	SM 2320B	110	3.0	mg/L	1	A615393	11/08/16	11/08/16	
Carbonate as CaCO3	SM 2320B	ND	3.0	mg/L	1	A615393	11/08/16	11/08/16	
Hydroxide as CaCO3	SM 2320B	ND	3.0	mg/L	1	A615393	11/08/16	11/08/16	
Chloride	EPA 300.0	360	5.0	mg/L	5	A615604	11/12/16	11/12/16	
Conductivity @ 25C	SM 2510B	1400	1.0	umhos/cm	1	A615393	11/08/16	11/08/16	
MBAS, Calculated as LAS, mol wt 340	SM 5540C	ND	0.050	mg/L	1	A615391	11/08/16 17:10	11/08/16	HT1.0
pH (1)	SM 4500-H+ B	7.9		pH Units	1	A615393	11/08/16	11/08/16	
pH Temperature in °C		23.1							
Sulfate as SO4	EPA 300.0	ND	1.0	mg/L	1	A615634	11/14/16	11/14/16	
Total Dissolved Solids	SM 2540C	860	5.0	mg/L	1	A615463	11/09/16	11/11/16	

					RL				
Analyte	Method	Result	RL	Units	Mult	Batch	Prepared	Analyzed	Qual
Calcium - Dissolved (1)	EPA 200.7	55	0.10	mg/L	1	A615670	11/15/16	11/16/16	
Hardness as CaCO3, Dissolved	SM 2340B	170	0.41	mg/L					
Magnesium - Dissolved (1)	EPA 200.7	8.0	0.10	mg/L	1	A615670	11/15/16	11/16/16	
Potassium - Dissolved (1)	EPA 200.7	3.7	2.0	mg/L	1	A615670	11/15/16	11/16/16	
Sodium - Dissolved (1)	EPA 200.7	220	1.0	mg/L	1	A615670	11/15/16	11/17/16	MS1.4

Western Placer County GW Recharge

WPC WQ Sampling Fall 2016, Placer County

Certificate of Analysis

Sample ID: A6K0830-02 Sampled By: Dennis Ho

Sample Description: SVMW - 2C

Sample Date - Time: 11/04/16 - 13:46

Matrix: Ground Water

Sample Type: Grab

BSK Associates Fresno General Chemistry

Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed	Qual
Alkalinity as CaCO3	SM 2320B	87	3.0	mg/L	1	A615393	11/08/16	11/08/16	
Bicarbonate as CaCO3	SM 2320B	87	3.0	mg/L	1	A615393	11/08/16	11/08/16	
Carbonate as CaCO3	SM 2320B	ND	3.0	mg/L	1	A615393	11/08/16	11/08/16	
Hydroxide as CaCO3	SM 2320B	ND	3.0	mg/L	1	A615393	11/08/16	11/08/16	
Chloride	EPA 300.0	580	5.0	mg/L	5	A615604	11/12/16	11/12/16	
Conductivity @ 25C	SM 2510B	2000	1.0	umhos/cm	1	A615393	11/08/16	11/08/16	
MBAS, Calculated as LAS, mol wt 340	SM 5540C	ND	0.050	mg/L	1	A615391	11/08/16 17:10	11/08/16	HT1.0
pH (1)	SM 4500-H+ B	7.8		pH Units	1	A615393	11/08/16	11/08/16	
pH Temperature in °C		23.4							
Sulfate as SO4	EPA 300.0	ND	1.0	mg/L	1	A615634	11/14/16	11/14/16	
Total Dissolved Solids	SM 2540C	1400	5.0	mg/L	1	A615505	11/10/16	11/15/16	

					RL				
Analyte	Method	Result	RL	Units	Mult	Batch	Prepared	Analyzed	Qual
Calcium - Dissolved (1)	EPA 200.7	110	0.10	mg/L	1	A615670	11/15/16	11/16/16	
Hardness as CaCO3, Dissolved	SM 2340B	350	0.41	mg/L					
Magnesium - Dissolved (1)	EPA 200.7	21	0.10	mg/L	1	A615670	11/15/16	11/16/16	
Potassium - Dissolved (1)	EPA 200.7	4.9	2.0	mg/L	1	A615670	11/15/16	11/16/16	
Sodium - Dissolved (1)	EPA 200.7	240	1.0	mg/L	1	A615670	11/15/16	11/17/16	

BSK Associates Fresno General Chemistry Quality Control Report

				Spike	Source		%REC		RPD	Date
Analyte	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Analyzed Qual
		EPA 3	00.0 - Q	uality Co	ntrol					
Batch: A615604										Prepared: 11/11/201
Prep Method: Method Specific Prep	paration									Analyst: INI
Blank (A615604-BLK1)										
Chloride	ND	1.0	mg/L							11/11/16
Blank Spike (A615604-BS1)										
Chloride	100	1.0	mg/L	100		100	90-110			11/11/16
Matrix Spike (A615604-MS1), Source	e: A6K0451-12									
Chloride	53	1.0	mg/L	50	4.3	97	80-120			11/11/16
Matrix Spike Dup (A615604-MSD1),	Source: A6K0451-12									
Chloride	55	1.0	mg/L	50	4.3	101	80-120	4	20	11/12/16
		EPA 3	00.0 - Q	uality Co	ntrol					
Batch: A615634				-						Prepared: 11/14/2010
Prep Method: Method Specific Prep	paration									Analyst: INI
Blank (A615634-BLK1)										
Sulfate as SO4	ND	1.0	mg/L							11/14/16
Blank Spike (A615634-BS1)										
Sulfate as SO4	100	1.0	mg/L	100		102	90-110			11/14/16
Matrix Spike (A615634-MS1), Source	e: A6K1448-04									
Sulfate as SO4	68	1.0	mg/L	50	18	100	80-120			11/14/16
Matrix Spike (A615634-MS2), Source	e: A6K1448-06									
Sulfate as SO4	66	1.0	mg/L	50	16	100	80-120			11/14/16
Matrix Spike Dup (A615634-MSD1),	Source: A6K1448-04									
Sulfate as SO4	69	1.0	mg/L	50	18	101	80-120	0	20	11/14/16
Matrix Spike Dup (A615634-MSD2),	Source: A6K1448-06									
Sulfate as SO4	66	1.0	mg/L	50	16	100	80-120	1	20	11/14/16
		SM 23	20B - Q	uality Co	ntrol					
Batch: A615393										Prepared: 11/8/2016
Prep Method: Method Specific Prep	paration									Analyst: CEC
Blank (A615393-BLK1)										
Alkalinity as CaCO3	ND	3.0	mg/L							11/08/16
Bicarbonate as CaCO3	ND	3.0	mg/L							11/08/16
Carbonate as CaCO3	ND	3.0	mg/L							11/08/16
Hydroxide as CaCO3	ND	3.0	mg/L							11/08/16
Blank Spike (A615393-BS1)										
Alkalinity as CaCO3	97	3.0	mg/L	100		97	80-120			11/08/16
A6K0830 FINAL 11212016 1031										
Printed: 11/21/2016										
QA-RP-0001-10 Final.rpt		www	BSKAs	sociates.	com —			_		Page 5 of 13
· · · · · · · · · · · · · · · · · · ·										

				Spike	Source		%REC		RPD	Date	
Analyte	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Analyzed	Qual
		SM 23	20B - Qι	ality Co	ntrol						
Batch: A615393										Prepared	d: 11/8/201
Prep Method: Method Specific Prepara	ation									Ar	nalyst: CE
Blank Spike Dup (A615393-BSD1)											
Alkalinity as CaCO3	97	3.0	mg/L	100		97	80-120	0	20	11/08/16	
Duplicate (A615393-DUP1), Source: A6	K0748-04										
Alkalinity as CaCO3	150	3.0	mg/L		150			0	10	11/08/16	
Bicarbonate as CaCO3	150	3.0	mg/L		150			0	10	11/08/16	
Carbonate as CaCO3	ND	3.0	mg/L		ND				10	11/08/16	
Hydroxide as CaCO3	ND	3.0	mg/L		ND				10	11/08/16	
		SM 25	10B - Qւ	ality Co	ntrol						
Batch: A615393											d: 11/8/201
Prep Method: Method Specific Prepara	ation									Ar	nalyst: CE
Blank Spike (A615393-BS1)											
Conductivity @ 25C	1400	1.0	umhos/c m	1400		98	90-110			11/08/16	
Blank Spike Dup (A615393-BSD1)											
Conductivity @ 25C	1400	1.0	umhos/c m	1400		97	90-110	1		11/08/16	
Duplicate (A615393-DUP1), Source: A6	K0749 04										
Conductivity @ 25C	420	1.0	umhos/c		420			0	20	11/08/16	
, 0			m								
		SM 25	40C - Qι	ality Co	ntrol						
Batch: A615463 Prep Method: Method Specific Prepara	ation										d: 11/9/201 yst: DEH/0
Blank (A615463-BLK1)											
Total Dissolved Solids	ND	5.0	mg/L							11/11/16	
Blank Spike (A615463-BS1)											
Total Dissolved Solids	990	5.0	mg/L	1000		99	70-130			11/11/16	
Duplicate (A615463-DUP1), Source: A6	K0302-02										
Total Dissolved Solids	970	5.0	mg/L		960			0	20	11/11/16	
Duplicate (A615463-DUP2), Source: A6	K0405-03										
Total Dissolved Solids	150	5.0	mg/L		150			1	20	11/11/16	
		SM 25	40C - Qւ	ality Co	ntrol						
Batch: A615505				=						Prepared:	11/10/201
Prep Method: Method Specific Prepara	ation									Anal	yst: DEH/0
Blank (A615505-BLK1)											
Total Dissolved Solids	ND	5.0	mg/L							11/15/16	
A6K0830 FINAL 11212016 1031											
Printed: 11/21/2016											
										D	e 6 of 13

				Spike	Source		%REC		RPD	Date	
Analyte	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Analyzed	Qual
		SM 25	40C - Qı	uality Co	ntrol						
Batch: A615505										Prepared	: 11/10/201
Prep Method: Method Specific Prepara	ation									Ana	lyst: DEH/
Blank Spike (A615505-BS1)											
Total Dissolved Solids	990	5.0	mg/L	1000		99	70-130			11/15/16	
Ouplicate (A615505-DUP1), Source: A6	6K0474-03										
otal Dissolved Solids	190	5.0	mg/L		190			1	20	11/15/16	
Duplicate (A615505-DUP2), Source: A6	6K0648-01										
Total Dissolved Solids	190	5.0	mg/L		190			1	20	11/15/16	
		SM 4500	-H+ B -	Quality C	Control						
Batch: A615393				_						Prepare	d: 11/8/201
Prep Method: Method Specific Prepara	ation										nalyst: CE
Duralis etc. (A.C.4.5200, D.U.D.4). Common A.C.	21/07/10 04										
Duplicate (A615393-DUP1), Source: A6 oH (1)	7.6		pH Units		7.6			0	20	11/08/16	
(.)			•					ŭ			
Batch: A615391		SM 55	40C - Qı	uality Co	ntrol					Droporo	d: 11/0/201
Prep Method: Method Specific Prepara	ation										d: 11/8/201 nalyst: SN
											iaiyot. Oit
Blank (A615391-BLK1)	ND	0.050								44/00/40	
MBAS, Calculated as LAS, mol wt 340	ND	0.050	mg/L							11/08/16	
Blank Spike (A615391-BS1)											
MBAS, Calculated as LAS, mol wt 340	0.95	0.050	mg/L	1.0		95	82-112			11/08/16	
Blank Spike Dup (A615391-BSD1)											
MBAS, Calculated as LAS, mol wt 340	0.99	0.050	mg/L	1.0		99	82-112	4	20	11/08/16	
Matrix Spike (A615391-MS1), Source: A	A6K0790-01										
MBAS, Calculated as LAS, mol wt 340	0.91	0.050	mg/L	1.0	ND	91	80-112			11/08/16	
Matrix Spike Dup (A615391-MSD1), So	urce: A6K0790-01	I									
//BAS, Calculated as LAS, mol wt 340	0.94	0.050	mg/L	1.0	ND	94	80-112	3	20	11/08/16	

BSK Associates Fresno Metals Quality Control Report

				Spike	Source		%REC		RPD	Date	
Analyte	Result	RL	Units	Level	Result	%REC	Limits	RPD		Analyzed	Qual
		EPA 2	00.7 - Q	uality Co	ntrol						
Batch: A615670										Prepared	I: 11/15/2016
Prep Method: Filtration - Metals											nalyst: MDS
Blank (A615670-BLK1)											
Calcium - Dissolved (1)	ND	0.10	mg/L							11/16/16	
Magnesium - Dissolved (1)	ND	0.10	mg/L							11/16/16	
Potassium - Dissolved (1)	ND	2.0	mg/L							11/16/16	
Blank (A615670-BLK2)											
Sodium - Dissolved (1)	ND	1.0	mg/L							11/17/16	
Blank Spike (A615670-BS1)											
Calcium - Dissolved (1)	9.2	0.10	mg/L	10		92	85-115			11/16/16	
Magnesium - Dissolved (1)	9.7	0.10	mg/L	10		97	85-115			11/16/16	
Potassium - Dissolved (1)	10	2.0	mg/L	10		101	85-115			11/16/16	
Blank Spike (A615670-BS2)											
Sodium - Dissolved (1)	9.5	1.0	mg/L	10		95	85-115			11/17/16	
Blank Spike Dup (A615670-BSD1)											
Calcium - Dissolved (1)	9.4	0.10	mg/L	10		94	85-115	2	20	11/16/16	
Magnesium - Dissolved (1)	9.5	0.10	mg/L	10		95	85-115	2	20	11/16/16	
Potassium - Dissolved (1)	10	2.0	mg/L	10		102	85-115	1	20	11/16/16	
Blank Spike Dup (A615670-BSD2)											
Sodium - Dissolved (1)	9.2	1.0	mg/L	10		92	85-115	4	20	11/17/16	
Matrix Spike (A615670-MS1), Source:	A6K0830-01										
Calcium - Dissolved (1)	65	0.10	mg/L	10	55	96	70-130			11/16/16	
Magnesium - Dissolved (1)	17	0.10	mg/L	10	8.0	91	70-130			11/16/16	
Potassium - Dissolved (1)	14	2.0	mg/L	10	3.7	99	70-130			11/16/16	
Matrix Spike (A615670-MS2), Source:	A6K1219-03										
Calcium - Dissolved (1)	24	0.10	mg/L	10	15	96	70-130			11/16/16	
Magnesium - Dissolved (1)	17	0.10	mg/L	10	8.0	90	70-130			11/16/16	
Potassium - Dissolved (1)	12	2.0	mg/L	10	2.2	97	70-130			11/16/16	
Matrix Spike (A615670-MS3), Source:	A6K0830-01										
Sodium - Dissolved (1)	220	1.0	mg/L	10	220	42	70-130			11/17/16	MS1.0 <i>Low</i>
Matrix Spike (A615670-MS4), Source:	A6K1219-03										
Sodium - Dissolved (1)	20	1.0	mg/L	10	12	78	70-130			11/17/16	
Matrix Spike Dup (A615670-MSD1), So	ource: A6K0830-01										
Calcium - Dissolved (1)	64	0.10	mg/L	10	55	86	70-130	1	20	11/16/16	
Magnesium - Dissolved (1)	17	0.10	mg/L	10	8.0	86	70-130	3	20	11/16/16	
Potassium - Dissolved (1)	13	2.0	mg/L	10	3.7	96	70-130	2	20	11/16/16	
Matrix Spike Dup (A615670-MSD2), So	ource: A6K1219-03										
Calcium - Dissolved (1)	25	0.10	mg/L	10	15	99	70-130	1	20	11/16/16	

A6K0830 FINAL 11212016 1031

Printed: 11/21/2016

QA-RP-0001-10 Final.rpt

BSK Associates Fresno Metals Quality Control Report

Analyte	Result	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Date Analyzed Qual
		EPA 2	00.7 - Q	uality Co	ntrol					_
Batch: A615670 Prep Method: Filtration - Metals										Prepared: 11/15/2016 Analyst: MDS
Matrix Spike Dup (A615670-MSD2),	Source: A6K1219-03									
Magnesium - Dissolved (1)	17	0.10	mg/L	10	8.0	91	70-130	1	20	11/16/16
Potassium - Dissolved (1)	12	2.0	mg/L	10	2.2	99	70-130	1	20	11/16/16
Matrix Spike Dup (A615670-MSD3),	Source: A6K0830-01									
Sodium - Dissolved (1)	230	1.0	mg/L	10	220	84	70-130	2	20	11/17/16
Matrix Spike Dup (A615670-MSD4),	Source: A6K1219-03									
Sodium - Dissolved (1)	20	1.0	mg/L	10	12	80	70-130	1	20	11/17/16

Certificate of Analysis

Notes:

- The Chain of Custody document and Sample Integrity Sheet are part of the analytical report.
- Any remaining sample(s) for testing will be disposed of according to BSK's sample retention policy unless other arrangements are made in advance
- All positive results for EPA Methods 504.1 and 524.2 require the analysis of a Field Reagent Blank (FRB) to confirm that the results are not a contamination error from field sampling steps. If Field Reagent Blanks were not submitted with the samples, this method requirement has not been performed.
- · Samples collected by BSK Analytical Laboratories were collected in accordance with the BSK Sampling and Collection Standard Operating Procedures.
- J-value is equivalent to DNQ (Detected, not quantified) which is a trace value. A trace value is an analyte detected between the MDL and the laboratory reporting limit. This result is of an unknown data quality and is only qualitative (estimated). Baseline noise, calibration curve extrapolation below the lowest calibrator, method blank detections, and integration artifacts can all produce apparent DNQ values, which contribute to the un-reliability of these values.
- (1) Residual chlorine and pH analysis have a 15 minute holding time for both drinking and waste water samples as defined by the EPA and 40 CFR 136. Waste water and ground water (monitoring well) samples must be field filtered to meet the 15 minute holding time for dissolved metals.
- · Summations of analytes (i.e. Total Trihalomethanes) may appear to add individual amounts incorrectly, due to rounding of analyte values occurring before or after the total value is calculated, as well as rounding of the total value.
- RL Multiplier is the factor used to adjust the reporting limit (RL) due to variations in sample preparation procedures and dilutions required for matrix interferences.
- Due to the subjective nature of the Threshold Odor Method, all characterizations of the detected odor are the opinion of the panel of analysts. The characterizations can be found in Standard Methods 2170B Figure 2170:1.
- The MCLs provided in this report (if applicable) represent the primary MCLs for that analyte.

Definitions

mg/L:	Milligrams/Liter (ppm)	MDL:	Method Detection Limit	MDA95:	Min. Detected Activity
mg/Kg:	Milligrams/Kilogram (ppm)	RL:	Reporting Limit: DL x Dilution	MPN:	Most Probable Number
μg/L:	Micrograms/Liter (ppb)	ND:	None Detected at RL	CFU:	Colony Forming Unit
μg/Kg:	Micrograms/Kilogram (ppb)	pCi/L:	Picocuries per Liter	Absent:	Less than 1 CFU/100mLs
%:	Percent Recovered (surrogates)	RL Mult:	RL Multiplier	Present:	1 or more CFU/100mLs
NR:	Non-Reportable	MCL:	Maximum Contaminant Limit		

Please see the individual Subcontract Lab's report for applicable certifications.

WA100008-008

BSK is not accredited under the NELAP program for the following parameters: **NA**

Certifications: Please refer to our website for a copy of our Accredited Fields of Testing under each certification.

Fresno			
State of California - ELAP	1180	State of Hawaii	4021
State of Nevada	CA000792016-1	State of Oregon - NELAP	4021
EPA - UCMR3	CA00079	State of Washington	C997-16
Sacramento			
State of California - ELAP	2435		
San Bernardino			
State of California - ELAP	2993	State of Oregon - NELAP	4119-001
Vancouver		-	

A6K0830 FINAL 11212016 1031

State of Oregon - NELAP

Printed: 11/21/2016

State of Washington

C824-16

11082016

geico8314

Turnaround: Standard

Due Date: 11/22/2016

GEI Consultants

12 δ Associates Engineers/Laboratories

1414 Stanislaus St., Fresno, CA 93706 (559) 497-2888 · Fax (559) 497-2893 www.bskassociates.com

Date needed: Rush (Surcharge may apply) Standard - 10 business days

Turnaround Time Request

g perm	_	ousenneme i _{Pro}	1
		geico8314	A6K0830
		10	11/08/2016

Shipping Method Cooling Method:	Received	Relinquis	Relinquis					\checkmark					_			2)	#			Sample		WPC	Address*: 2868 P	GEI (Compa
Shipping Method: ONTRAC	pri aboy Signature and Printe	heapy: (Signature and Print	Relinquished by: (Signature and Printed Name)													- MMVS	WPMW-		Matrix Types	ox Ditto Dennis Yo	Sampler Name (Printed/Signature)*	Trace (J-Flag)	WQ Sampling	Address*: 2868 Prospect Park Drive, Suite 400	GEI Consultants, Inc.	Company/Client Name:
Blue None	Printed Menne		emis Hu										The second secon			2c	-5B	Sample Description*	Matrix Types: SW=Surface Water BW=Bottled Water GW=Ground	がなり		Swamp X EDD Type: Std Excel	WPC WQ Sampling Fall 2016, Placer County	Orive, Suite 400		
GSO	200																	n*	ttled Water GW	Q		td Excel	ounty			
WALK-IN	地	Company	S F J																Water				1610374	Ranc	Richard Shatz	David Fairman
	1	SA A	CAET Consultants										\mathbb{Z}		-	_	11/2/16/11	Sampled* Date Tir	WW=Waste Water STW=Storm Water	Madera Co Other: N/A	Merced Co	SWRCB (Drinking Water)	374	Rancho Cordova	hatz	man
FED EX C		O III									/					13:46		Time I	ater STW=Sto			RCB (Drinking Water)		Va	i e	
Courier:	Date 11m		Date 1/4/16 17:								/					C 20 2	GW				Fresno Co				160	3 2.
	Payme	Receiv	8													1 postle for		Comments	DW=Drinking Water SO=Solid	Geotracker	System N	EDT to Cali	E-Mail	State*:	1610374	Richard Shatz
	Payment Received at Delivery: Date:	Received by: (Signature and Printed Name	Hy: (Signature and Pri	0												for both To		Comments / Station Code / W	er SO=Solid	Geotracker #: Not for Geotrac	System Number*: N/A	EDT to California SWRCB (Drinking Water)	Security Compliance	95		atz
	Delvery:	and Printed Nam	and Printed Mam							·						25 M		e / WTRAX		otracker		(Drinking Water	Mail	Zip*: 95670		
Custody Seal: Chilling Proces		e)	ma		· Annana	1												Pla	LI ace	er C	<u> </u> О.		Pro		E-mail*	916-6
Custody Seal: Y(N) Chilling Process Begun() / N	Amount		r L													<	<						<i>π</i> , Τ	-	DFair	916-631-4528
gung/ Q/			2													<	_	filte	rec	i due	e to	field	be la	b ∋s)	nan@g	28
_	PIA#		ida.	<u></u>		\dashv							-			<	<	(Nii		tes v	Mer	iner tell	s cont	acted	geicons	
	Δ#:	Con	A Company				-					_	_	<u> </u>								ıg tir			_{E-mair∗} :DFairman@geiconsultants.com	cell
	Check	Company					\setminus																		s.com	1:415-4
	/ Init.		60 6					+	A.,																	cell:415-420-2154
	Cash		288														_		-							4

geico8314

10

BSK Associates SR-FL-0002-16 Sample Integrity

BSK Bottles: Yes No Page Were correct containers and preservatives Was temperature within range? Yes No NA Yes No NA received for the tests requested? Chemistry ≤ 6°C Micro < 10°C Were there bubbles in the VOA vials? If samples were taken today, is there evidence Yes No WA Yes No (VA) (Volatiles Only) that chilling has begun? (Yes) Was a sufficient amount of sample received? No Did all bottles arrive unbroken and intact? res Νo Do samples have a hold time <72 hours? (Jes No Did all bottle labels agree with COC? Was PM notified of discrepancies? Was sodium thiosulfate added to CN sample(s) Yes No (NA Yes No COM By/Time: PM: until chlorine was no longer present? Passed? Checks 250ml(A) 500ml(B) 1Liter(C) 40ml VOA(V) Bacti Na₂S₂O₃ 10 None (P)White Cap Cr6 (P) Lt Green Label/Blue Cap NH40H(NH4)2SO4 DW Υ N CI, pH > 8Cr6 (P) Pink Label/Blue Cap NH4OH(NH4)2SO4 WW pH 9.3-9.7 Cr6 (P) Black Label/Blue Cap NH40H(NH4)2SO4 7199 pH 9.0-9.5 N ***24 HOUR HOLD TIME*** 13 HNO3 (P) Red GP or HCI (P) Purple Cap/Lt. Blue Label Yellow Cap/Label pH < 2 Y N H₂SO₄ (P) or (AG) NaOH (P) Green Cap Υ N CI, pH >10 Υ pH > 9Ν NaOH + ZnAc (P) Dissolved Oxygen 300ml (g) None (AG) 608/8081/8082, 625, 632/8321, 8151, 8270 **Bottles Received** HCl (AG)Lt. Blue Label O&G, Diesel Ascorbic, EDTA, KH2Ct (AG)Pink Label 525 Na₂O₃S 250mL (AG)Neon Green Label 515 Na₂S₂O₃ 1 Liter (Brown P) 549 Na₂S₂O₃ (AG)^{Blue Label} 548, THM, 524 Na₂S₂O₃ (CG) ^{Blue Label} 504, 505, 547 N Na₂S₂O₃ + MCAA (CG)^{Crange Label 531} Y pH < 3NH₄CI (AG)^{Purple Label} 552 EDA (AG)Brown Label DBPs HCL (CG) 524.2,BTEX,Gas, MTBE, 8260/624 Buffer pH 4 (CG) H₃PO₄ (CG)^{Salmon Label} Other: Asbestos 1Liter Plastic w/ Foil Low Level Hg / Metals Double Baggie Bottled Water 250mL / 500mL / 1 Liter Clear Glass Soil Tube Brass / Steel / Plastic Tedlar Bag / Plastic Bag Date/Time/Initials Preservative Container Date/Time/Initials Preservative Container Split S P SP SP S P Comments Labels checked by: 2MH @ 1434

Page 13 of 13

RUSH Paged by:_____

A7A1672 1/31/2017

Invoice: A702633

David Fairman GEI Consultants 2868 Prospect Park Drive, Suite 400 Rancho Cordova, CA 95670

RE: Report for A7A1672 WPC WQ sampling Fall 2016

Dear David Fairman,

Thank you for using BSK Associates for your analytical testing needs. In the following pages, you will find the test results for the samples submitted to our laboratory on 1/18/2017. The results have been approved for release by our Laboratory Director as indicated by the authorizing signature below.

The samples were analyzed for the test(s) indicated on the Chain of Custody (see attached) and the results relate only to the samples analyzed. BSK certifies that the testing was performed in accordance with the quality system requirements specified in the 2009 TNI Standard. Any deviations from this standard or from the method requirements for each test procedure performed will be annotated alongside the analytical result or noted in the Case Narrative. Unless otherwise noted, the sample results are reported on an "as received" basis.

If additional clarification of any information is required, please contact your Project Manager, Adam Trevarrow, at (800) 877-8310 or (559) 497-2888 x116.

Thanks again for using BSK Associates. We value your business and appreciate your loyalty.

Sincerely,

Adam Trevarrow, Project Manager

Accredited in Accordance with NELAP ORELAP #4021

Page 1 of 16

Case Narrative

Project and Report Details Invoice Details

Client:GEI ConsultantsInvoice To: GEI ConsultantsReport To:David FairmanInvoice Attn: Richard ShatzProject #:WPC WQ Sampling 1st Qtr, Placer County - 1610374Project PO#: 1610374

Received: 1/18/2017 - 09:50

Report Due: 2/01/2017

Sample Receipt Conditions

Cooler: Default Cooler Containers Intact

Temperature on Receipt °C: 1.3

COC/Labels Agree

Received On Wet Ice

Received On Wet Ice Packing Material - Other

Sample(s) were received in temperature range.

Initial receipt at BSK-SAC

Data Qualifiers

The following qualifiers have been applied to one or more analytical results:

MS1.0 Matrix spike recoveries exceed control limits.

MS1.4 Matrix spike recovery data unreliable due to significant parent sample concentration relative to fortification level (>4x).

Report Distribution

Recipient(s)	Report Format	CC:	
Richard Shatz	FINAL.RPT		
David Fairman	FINAL.RPT		
Sandy St. Hilaire	FINAL.RPT		

WPC WQ Sampling 1st Qtr, Placer County - 1610374

Certificate of Analysis

Sample ID: A7A1672-01
Sampled By: Dennis Ho
Sample Description: WPMW-5B

Sample Date - Time: 01/16/17 - 11:20

Matrix: Ground Water

Sample Type: Grab

BSK Associates Laboratory Fresno General Chemistry

Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed	Qual
Alkalinity as CaCO3	SM 2320B	110	3.0	mg/L	1	A700780	01/19/17	01/19/17	
Bicarbonate as CaCO3	SM 2320B	110	3.0	mg/L	1	A700780	01/19/17	01/19/17	
Carbonate as CaCO3	SM 2320B	ND	3.0	mg/L	1	A700780	01/19/17	01/19/17	
Hydroxide as CaCO3	SM 2320B	ND	3.0	mg/L	1	A700780	01/19/17	01/19/17	
Chloride	EPA 300.0	390	1.0	mg/L	1	A700756	01/19/17	01/19/17	
Conductivity @ 25C	SM 2510B	1400	1.0	umhos/cm	1	A700780	01/19/17	01/19/17	
Fluoride	EPA 300.0	0.28	0.10	mg/L	1	A700756	01/19/17	01/19/17	
pH (1)	SM 4500-H+ B	7.8		pH Units	1	A700780	01/19/17	01/19/17	
pH Temperature in °C		22.5							
Sulfate as SO4	EPA 300.0	ND	1.0	mg/L	1	A700756	01/19/17	01/19/17	
Total Dissolved Solids	SM 2540C	820	5.0	mg/L	1	A700804	01/19/17	01/26/17	

					RL				
Analyte	Method	Result	RL	Units	Mult	Batch	Prepared	Analyzed	Qual
Calcium - Dissolved (1)	EPA 200.7	55	0.10	mg/L	1	A701035	01/25/17	01/26/17	
Hardness as CaCO3, Dissolved	SM 2340B	170	0.41	mg/L					
Magnesium - Dissolved (1)	EPA 200.7	8.2	0.10	mg/L	1	A701035	01/25/17	01/26/17	
Potassium - Dissolved (1)	EPA 200.7	3.2	2.0	mg/L	1	A701035	01/25/17	01/26/17	
Sodium - Dissolved (1)	EPA 200.7	220	1.0	mg/L	1	A701035	01/25/17	01/26/17	MS1.4

WPC WQ Sampling 1st Qtr, Placer County - 1610374

Certificate of Analysis

Sample ID: A7A1672-02 Sampled By: Dennis Ho Sample Description: W77-B **Sample Date - Time:** 01/16/17 - 15:45

Matrix: Ground Water

Sample Type: Grab

BSK Associates Laboratory Fresno General Chemistry

Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed Qual
Alkalinity as CaCO3	SM 2320B	110	3.0	mg/L	1	A700780	01/19/17	01/19/17
Bicarbonate as CaCO3	SM 2320B	110	3.0	mg/L	1	A700780	01/19/17	01/19/17
Carbonate as CaCO3	SM 2320B	ND	3.0	mg/L	1	A700780	01/19/17	01/19/17
Hydroxide as CaCO3	SM 2320B	ND	3.0	mg/L	1	A700780	01/19/17	01/19/17
Chloride	EPA 300.0	390	1.0	mg/L	1	A700756	01/19/17	01/19/17
Fluoride	EPA 300.0	0.24	0.10	mg/L	1	A700756	01/19/17	01/19/17
pH (1)	SM 4500-H+ B	7.6		pH Units	1	A700780	01/19/17	01/19/17
pH Temperature in °C		22.7						
Sulfate as SO4	EPA 300.0	ND	1.0	mg/L	1	A700756	01/19/17	01/19/17
Total Dissolved Solids	SM 2540C	880	5.0	mg/L	1	A700804	01/19/17	01/26/17

Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed	Qual
Calcium - Dissolved (1)	EPA 200.7	76	0.10	mg/L	1	A701035	01/25/17	01/26/17	
Hardness as CaCO3, Dissolved	SM 2340B	340	0.41	mg/L					
Magnesium - Dissolved (1)	EPA 200.7	36	0.10	mg/L	1	A701035	01/25/17	01/26/17	
Potassium - Dissolved (1)	EPA 200.7	4.8	2.0	mg/L	1	A701035	01/25/17	01/26/17	
Sodium - Dissolved (1)	EPA 200.7	140	1.0	mg/L	1	A701035	01/25/17	01/26/17	

WPC WQ Sampling 1st Qtr, Placer County - 1610374

Certificate of Analysis

Sample ID: A7A1672-03
Sampled By: Dennis Ho
Sample Description: MW 3-2

Sample Date - Time: 01/17/17 - 10:45

Matrix: Ground Water

Sample Type: Grab

BSK Associates Laboratory Fresno General Chemistry

Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed	Qual
Alkalinity as CaCO3	SM 2320B	240	3.0	mg/L	1	A700780	01/19/17	01/19/17	
Bicarbonate as CaCO3	SM 2320B	240	3.0	mg/L	1	A700780	01/19/17	01/19/17	
Carbonate as CaCO3	SM 2320B	ND	3.0	mg/L	1	A700780	01/19/17	01/19/17	
Hydroxide as CaCO3	SM 2320B	ND	3.0	mg/L	1	A700780	01/19/17	01/19/17	
Chloride	EPA 300.0	79	1.0	mg/L	1	A700756	01/19/17	01/19/17	
Conductivity @ 25C	SM 2510B	1000	1.0	umhos/cm	1	A700780	01/19/17	01/19/17	
Fluoride	EPA 300.0	0.36	0.10	mg/L	1	A700756	01/19/17	01/19/17	
pH (1)	SM 4500-H+ B	7.2		pH Units	1	A700780	01/19/17	01/19/17	
pH Temperature in °C		22.4							
Sulfate as SO4	EPA 300.0	140	1.0	mg/L	1	A700756	01/19/17	01/19/17	
Total Dissolved Solids	SM 2540C	690	5.0	mg/L	1	A700804	01/19/17	01/26/17	

					RL				
Analyte	Method	Result	RL	Units	Mult	Batch	Prepared	Analyzed	Qual
Calcium - Dissolved (1)	EPA 200.7	73	0.10	mg/L	1	A701187	01/27/17	01/30/17	
Hardness as CaCO3, Dissolved	SM 2340B	420	0.41	mg/L					
Magnesium - Dissolved (1)	EPA 200.7	57	0.10	mg/L	1	A701187	01/27/17	01/30/17	
Potassium - Dissolved (1)	EPA 200.7	ND	2.0	mg/L	1	A701187	01/27/17	01/30/17	
Sodium - Dissolved (1)	EPA 200.7	58	1.0	mg/L	1	A701187	01/27/17	01/30/17	

WPC WQ Sampling 1st Qtr, Placer County - 1610374

Certificate of Analysis

Sample ID: A7A1672-04
Sampled By: Dennis Ho
Sample Description: MW-4

Sample Date - Time: 01/17/17 - 11:50

Matrix: Ground Water

Sample Type: Grab

BSK Associates Laboratory Fresno General Chemistry

Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed Qual
Alkalinity as CaCO3	SM 2320B	340	3.0	mg/L	1	A700780	01/19/17	01/19/17
Bicarbonate as CaCO3	SM 2320B	340	3.0	mg/L	1	A700780	01/19/17	01/19/17
Carbonate as CaCO3	SM 2320B	ND	3.0	mg/L	1	A700780	01/19/17	01/19/17
Hydroxide as CaCO3	SM 2320B	ND	3.0	mg/L	1	A700780	01/19/17	01/19/17
Chloride	EPA 300.0	26	1.0	mg/L	1	A700756	01/19/17	01/19/17
Conductivity @ 25C	SM 2510B	660	1.0	umhos/cm	1	A700780	01/19/17	01/19/17
Fluoride	EPA 300.0	0.25	0.10	mg/L	1	A700756	01/19/17	01/19/17
pH (1)	SM 4500-H+ B	6.9		pH Units	1	A700780	01/19/17	01/19/17
pH Temperature in °C		22.2						
Sulfate as SO4	EPA 300.0	10	1.0	mg/L	1	A700756	01/19/17	01/19/17
Total Dissolved Solids	SM 2540C	420	5.0	mg/L	1	A700804	01/19/17	01/26/17

					RL				
Analyte	Method	Result	RL	Units	Mult	Batch	Prepared	Analyzed	Qual
Calcium - Dissolved (1)	EPA 200.7	67	0.10	mg/L	1	A701187	01/27/17	01/30/17	
Hardness as CaCO3, Dissolved	SM 2340B	290	0.41	mg/L					
Magnesium - Dissolved (1)	EPA 200.7	30	0.10	mg/L	1	A701187	01/27/17	01/30/17	
Potassium - Dissolved (1)	EPA 200.7	ND	2.0	mg/L	1	A701187	01/27/17	01/30/17	
Sodium - Dissolved (1)	EPA 200.7	35	1.0	mg/L	1	A701187	01/27/17	01/30/17	

WPC WQ Sampling 1st Qtr, Placer County - 1610374

Certificate of Analysis

Sample ID: A7A1672-05
Sampled By: Dennis Ho
Sample Description: WPMW-3A

Sample Date - Time: 01/17/17 - 13:00 Matrix: Ground Water

Sample Type: Grab

BSK Associates Laboratory Fresno General Chemistry

Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed	Qual
Alkalinity as CaCO3	SM 2320B	100	3.0	mg/L	1	A700780	01/19/17	01/19/17	
Bicarbonate as CaCO3	SM 2320B	100	3.0	mg/L	1	A700780	01/19/17	01/19/17	
Carbonate as CaCO3	SM 2320B	ND	3.0	mg/L	1	A700780	01/19/17	01/19/17	
Hydroxide as CaCO3	SM 2320B	ND	3.0	mg/L	1	A700780	01/19/17	01/19/17	
Chloride	EPA 300.0	750	10	mg/L	10	A701219	01/28/17	01/28/17	
Conductivity @ 25C	SM 2510B	3000	1.0	umhos/cm	1	A700780	01/19/17	01/19/17	
Fluoride	EPA 300.0	0.26	0.10	mg/L	1	A700765	01/19/17	01/19/17	
pH (1)	SM 4500-H+ B	7.5		pH Units	1	A700780	01/19/17	01/19/17	
pH Temperature in °C		22.1							
Sulfate as SO4	EPA 300.0	200	1.0	mg/L	1	A700765	01/19/17	01/19/17	
Total Dissolved Solids	SM 2540C	1200	5.0	mg/L	1	A700804	01/19/17	01/26/17	

					RL				
Analyte	Method	Result	RL	Units	Mult	Batch	Prepared	Analyzed	Qual
Calcium - Dissolved (1)	EPA 200.7	170	0.10	mg/L	1	A701035	01/25/17	01/26/17	
Hardness as CaCO3, Dissolved	SM 2340B	610	0.41	mg/L					
Magnesium - Dissolved (1)	EPA 200.7	45	0.10	mg/L	1	A701035	01/25/17	01/26/17	
Potassium - Dissolved (1)	EPA 200.7	4.7	2.0	mg/L	1	A701035	01/25/17	01/26/17	
Sodium - Dissolved (1)	EPA 200.7	360	1.0	mg/L	1	A701035	01/25/17	01/26/17	

BSK Associates Laboratory Fresno General Chemistry Quality Control Report

Avalut	Donald	-	11-2	Spike	Source	0/ BEO	%REC	DDB	RPD	Date Ovel
Analyte	Result		Units	Level	Result	%REC	Limits	RPD	Limit	Analyzed Qual
		EPA 3	00.0 - Q	uality Co	ntrol					
Batch: A700756 Prep Method: Method Specific Preparation	1									Prepared: 1/18/201 Analyst: IN
Blank (A700756-BLK1)										
Chloride	ND	1.0	mg/L							01/18/17
·luoride	ND	0.10	mg/L							01/18/17
ulfate as SO4	ND	1.0	mg/L							01/18/17
Blank Spike (A700756-BS1)										
hloride	100	1.0	mg/L	100		100	90-110			01/18/17
luoride	1.0	0.10	mg/L	1.0		104	90-110			01/18/17
sulfate as SO4	100	1.0	mg/L	100		100	90-110			01/18/17
Matrix Spike (A700756-MS1), Source: A7A1	651-01									
Chloride	59	1.0	mg/L	50	8.6	100	80-120			01/18/17
luoride	0.75	0.10	mg/L	0.50	0.24	103	80-120			01/18/17
sulfate as SO4	73	1.0	mg/L	50	23	100	80-120			01/18/17
Matrix Spike (A700756-MS2), Source: A7A1	679-01									
chloride	50	1.0	mg/L	50	ND	99	80-120			01/19/17
luoride	0.56	0.10	mg/L	0.50	ND	113	80-120			01/19/17
ulfate as SO4	49	1.0	mg/L	50	ND	97	80-120			01/19/17
Matrix Spike Dup (A700756-MSD1), Source	: A7A1651-01									
Chloride	59	1.0	mg/L	50	8.6	102	80-120	1	20	01/18/17
luoride	0.76	0.10	mg/L	0.50	0.24	104	80-120	1	10	01/18/17
Sulfate as SO4	74	1.0	mg/L	50	23	102	80-120	1	20	01/18/17
Matrix Spike Dup (A700756-MSD2), Source	: A7A1679-01									
Chloride	51	1.0	mg/L	50	ND	100	80-120	1	20	01/19/17
Fluoride	0.54	0.10	mg/L	0.50	ND	108	80-120	5	10	01/19/17
Sulfate as SO4	49	1.0	mg/L	50	ND	98	80-120	1	20	01/19/17
		EPA 3	00.0 - Q	uality Co	ntrol					
Batch: A700765 Prep Method: Method Specific Preparatior	1									Prepared: 1/19/201 Analyst: IN
Blank (A700765-BLK1)										
Fluoride	ND	0.10	mg/L							01/19/17
Sulfate as SO4	ND	1.0	mg/L							01/19/17
Blank Spike (A700765-BS1)										
luoride	1.0	0.10	mg/L	1.0		104	90-110			01/19/17
sulfate as SO4	100	1.0	mg/L	100		100	90-110			01/19/17
Matrix Spike (A700765-MS1), Source: A7A1	667-06									
luoride	0.60	0.10	mg/L	0.50	ND	102	80-120			01/19/17
sulfate as SO4	63	1.0	mg/L	50	13	99	80-120			01/19/17
latrix Spike (A700765-MS2), Source: A7A1	704-03									

www.BSKAssociates.com

A7A1672 FINAL 01312017 1416

Printed: 1/31/2017

QA-RP-0001-10 Final.rpt

BSK Associates Laboratory Fresno General Chemistry Quality Control Report

				Spike	Source		%REC		RPD	Date
Analyte	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Analyzed Qual
		EPA 30	00.0 - Q	uality Co	ntrol					
Batch: A700765										Prepared: 1/19/201
Prep Method: Method Specific Prepara	tion									Analyst: IN
Matrix Spike (A700765-MS2), Source: A	7A1704-03									
Fluoride	0.93	0.10	mg/L	0.50	0.40	107	80-120			01/19/17
Sulfate as SO4	84	1.0	mg/L	50	33	101	80-120			01/19/17
Matrix Spike Dup (A700765-MSD1), Sou	ırce: A7A1667-06	i								
Fluoride	0.62	0.10	mg/L	0.50	ND	105	80-120	3	10	01/19/17
Sulfate as SO4	65	1.0	mg/L	50	13	103	80-120	3	20	01/19/17
Matrix Spike Dup (A700765-MSD2), Sou	ırce: A7A1704-03									
Fluoride	0.94	0.10	mg/L	0.50	0.40	108	80-120	1	10	01/19/17
Sulfate as SO4	85	1.0	mg/L	50	33	103	80-120	1	20	01/19/17
		EPA 30	00.0 - Q	uality Co	ntrol					
Batch: A701219		LI A O	JU.U Q	aunty 00						Prepared: 1/28/201
Prep Method: Method Specific Prepara	tion									Analyst: IN
										•
Blank (A701219-BLK1)										
Chloride	ND	1.0	mg/L							01/28/17
Blank Spike (A701219-BS1)										
Chloride	100	1.0	mg/L	100		101	90-110			01/28/17
Matrix Spike (A701219-MS1), Source: A		4.0		=0	44	400	00.400			0.4/0.0/4.7
Chloride	61	1.0	mg/L	50	11	100	80-120			01/28/17
Matrix Spike (A701219-MS2), Source: A	7A1437-02									
Chloride	49	1.0	mg/L	50	ND	99	80-120			01/28/17
Matrix Spike Dup (A701219-MSD1), Sou	uroo: A7A2791 01									
Chloride	62	1.0	mg/L	50	11	102	80-120	2	20	01/28/17
Chloride	02	1.0	IIIg/L	30	11	102	00-120	2	20	01/20/17
Matrix Spike Dup (A701219-MSD2), Sou	ırce: A7A1437-02									
Chloride	50	1.0	mg/L	50	ND	99	80-120	0	20	01/28/17
		SM 23	20B - Q	uality Co	ntrol					
Batch: A700780				_						Prepared: 1/19/201
Prep Method: Method Specific Prepara	tion									Analyst: CE
Blank (A700780-BLK1)										
Alkalinity as CaCO3	ND	3.0	mg/L							01/19/17
Bicarbonate as CaCO3	ND	3.0	mg/L							01/19/17
Carbonate as CaCO3	ND	3.0	mg/L							01/19/17
Hydroxide as CaCO3	ND	3.0	mg/L							01/19/17
Blank Spike (A700780-BS1)										
Alkalinity as CaCO3	94	3.0	mg/L	100		94	80-120			01/19/17
A7A1672 FINAL 01312017 1416										

Printed: 1/31/2017

QA-RP-0001-10 Final.rpt

BSK Associates Laboratory Fresno **General Chemistry Quality Control Report**

				Spike	Source		%REC		RPD	Date
Analyte	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Analyzed Qual
		SM 23	20B - Qւ	iality Co	ntrol					
Batch: A700780										Prepared: 1/19/201
Prep Method: Method Specific Prep	paration									Analyst: CE
Blank Spike Dup (A700780-BSD1)										
Alkalinity as CaCO3	100	3.0	mg/L	100		101	80-120	7	20	01/19/17
Duplicate (A700780-DUP1), Source:	A7A1653-01									
Alkalinity as CaCO3	180	3.0	mg/L		190			1	10	01/19/17
Bicarbonate as CaCO3	180	3.0	mg/L		190			1	10	01/19/17
Carbonate as CaCO3	ND	3.0	mg/L		ND				10	01/19/17
Hydroxide as CaCO3	ND	3.0	mg/L		ND				10	01/19/17
		SM 25	10B - Qւ	ality Co	ntrol					
Batch: A700780										Prepared: 1/19/201
Prep Method: Method Specific Prep	paration									Analyst: CE0
Blank Spike (A700780-BS1)										
Conductivity @ 25C	1400	1.0	umhos/c	1400		99	90-110			01/19/17
			m							
Blank Spike Dup (A700780-BSD1)										
Conductivity @ 25C	1400	1.0	umhos/c m	1400		98	90-110	1		01/19/17
Duplicate (A700780-DUP1), Source:	A7A1653_01									
Conductivity @ 25C	620	1.0	umhos/c		620			0	20	01/19/17
			m							
		SM 25	40C - Qւ	ality Co	ntrol					
Batch: A700804										Prepared: 1/19/201
Prep Method: Method Specific Prep	paration									Analyst: DEI
Blank (A700804-BLK1)										
Total Dissolved Solids	ND	5.0	mg/L							01/26/17
Blank Spike (A700804-BS1)										
Total Dissolved Solids	990	5.0	mg/L	1000		99	70-130			01/26/17
			3							
Duplicate (A700804-DUP1), Source:					100					04/00/47
Total Dissolved Solids	180	5.0	mg/L		180			1	20	01/26/17
Duplicate (A700804-DUP2), Source:	A7A1668-01									
Total Dissolved Solids	700	5.0	mg/L		690			1	20	01/26/17
		SM 4500)-H+ B - (Quality (Control					
Batch: A700780										Prepared: 1/19/2017
Prep Method: Method Specific Prep	paration									Analyst: CEC
Duplicate (A700780-DUP1), Source:	A7A1653-01									
pH (1)	7.9		pH Units		7.6			4	20	01/19/17
A										
A7A1672 FINAL 01312017 1416 Printed: 1/31/2017										
		NAME OF THE PARTY	DCKAC	sociates.	com -					Page 10 of 16
QA-RP-0001-10 Final.rpt		- www.	DONASS.	ociates.	.com			_		

BSK Associates Laboratory Fresno Metals Quality Control Report

				Spike	Source		%REC		RPD	Date
Analyte	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Analyzed Qual
		EPA 20	00.7 - Q	uality Co	ntrol					
Batch: A701035				•						Prepared: 1/25/2
Prep Method: Filtration - Metals										Analyst: M
Blank (A701035-BLK2)										
Calcium - Dissolved (1)	ND	0.10	mg/L							01/26/17
Magnesium - Dissolved (1)	ND	0.10	mg/L							01/26/17
Potassium - Dissolved (1)	ND	2.0	mg/L							01/26/17
Sodium - Dissolved (1)	ND	1.0	mg/L							01/26/17
Blank Spike (A701035-BS2)										
Calcium - Dissolved (1)	3.9	0.10	mg/L	4.0		97	85-115			01/26/17
Magnesium - Dissolved (1)	4.1	0.10	mg/L	4.0		103	85-115			01/26/17
Potassium - Dissolved (1)	4.3	2.0	mg/L	4.0		107	85-115			01/26/17
Sodium - Dissolved (1)	3.9	1.0	mg/L	4.0		97	85-115			01/26/17
Blank Spike Dup (A701035-BSD2)										
Calcium - Dissolved (1)	4.0	0.10	mg/L	4.0		99	85-115	1	20	01/26/17
Magnesium - Dissolved (1)	4.1	0.10	mg/L	4.0		103	85-115	0	20	01/26/17
Potassium - Dissolved (1)	4.2	2.0	mg/L	4.0		105	85-115	2	20	01/26/17
Sodium - Dissolved (1)	3.9	1.0	mg/L	4.0		98	85-115	1	20	01/26/17
Matrix Spike (A701035-MS3), Source:	A7A1672-01									
Calcium - Dissolved (1)	59	0.10	mg/L	4.0	55	98	70-130			01/26/17
Magnesium - Dissolved (1)	13	0.10	mg/L	4.0	8.2	116	70-130			01/26/17
Potassium - Dissolved (1)	7.6	2.0	mg/L	4.0	3.2	112	70-130			01/26/17
Sodium - Dissolved (1)	230	1.0	mg/L	4.0	220	242	70-130			01/26/17 MS1.0 H
Matrix Spike Dup (A701035-MSD3), So	ource: A7A1672-01	l								
Calcium - Dissolved (1)	58	0.10	mg/L	4.0	55	78	70-130	1	20	01/26/17
Magnesium - Dissolved (1)	12	0.10	mg/L	4.0	8.2	105	70-130	3	20	01/26/17
Potassium - Dissolved (1)	7.4	2.0	mg/L	4.0	3.2	107	70-130	3	20	01/26/17
Sodium - Dissolved (1)	220	1.0	mg/L	4.0	220	22	70-130	4	20	01/26/17 MS1.0 <i>L</i>
		EPA 20	00.7 - Q	uality Co	ntrol					
Batch: A701187										Prepared: 1/27/2
Prep Method: Filtration - Metals										Analyst: N
Blank (A701187-BLK2)										
Calcium - Dissolved (1)	ND	0.10	mg/L							01/30/17
Magnesium - Dissolved (1)	ND	0.10	mg/L							01/30/17
Potassium - Dissolved (1)	ND	2.0	mg/L							01/30/17
Sodium - Dissolved (1)	ND	1.0	mg/L							01/30/17
Blank Spike (A701187-BS2)										
Calcium - Dissolved (1)	3.7	0.10	mg/L	4.0		92	85-115			01/30/17
Magnesium - Dissolved (1)	3.9	0.10	mg/L	4.0		98	85-115			01/30/17
Potassium - Dissolved (1)	3.8	2.0	mg/L	4.0		94	85-115			01/30/17
Sodium - Dissolved (1)	3.8	1.0	mg/L	4.0		94	85-115			01/30/17
Blank Spike Dup (A701187-BSD2)										

Printed: 1/31/2017

QA-RP-0001-10 Final.rpt

BSK Associates Laboratory Fresno Metals Quality Control Report

				Spike	Source		%REC		RPD	Date	
Analyte	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Analyzed	Qual
		EPA 20	00.7 - Q	uality Co	ntrol						
Batch: A701187										Prepare	d: 1/27/201
Prep Method: Filtration - Metals										Aı	nalyst: MDS
Blank Spike Dup (A701187-BSD2)											
Calcium - Dissolved (1)	3.7	0.10	mg/L	4.0		92	85-115	0	20	01/30/17	
Magnesium - Dissolved (1)	3.8	0.10	mg/L	4.0		94	85-115	4	20	01/30/17	
Potassium - Dissolved (1)	3.8	2.0	mg/L	4.0		95	85-115	1	20	01/30/17	
Sodium - Dissolved (1)	3.7	1.0	mg/L	4.0		93	85-115	1	20	01/30/17	
Matrix Spike (A701187-MS3), Source:	A7A1779-01										
Calcium - Dissolved (1)	41	0.10	mg/L	4.0	37	99	70-130			01/30/17	
Magnesium - Dissolved (1)	9.0	0.10	mg/L	4.0	5.3	94	70-130			01/30/17	
Potassium - Dissolved (1)	5.6	2.0	mg/L	4.0	ND	99	70-130			01/30/17	
Sodium - Dissolved (1)	190	1.0	mg/L	4.0	180	55	70-130			01/30/17	MS1.0 <i>Low</i>
Matrix Spike (A701187-MS4), Source:	A7A1924-04										
Calcium - Dissolved (1)	16	0.10	mg/L	4.0	13	87	70-130			01/30/17	
Magnesium - Dissolved (1)	5.8	0.10	mg/L	4.0	1.8	99	70-130			01/30/17	
Potassium - Dissolved (1)	4.7	2.0	mg/L	4.0	ND	116	70-130			01/30/17	
Sodium - Dissolved (1)	7.7	1.0	mg/L	4.0	3.9	94	70-130			01/30/17	
Matrix Spike Dup (A701187-MSD3), So	ource: A7A1779-01										
Calcium - Dissolved (1)	40	0.10	mg/L	4.0	37	79	70-130	2	20	01/30/17	
Magnesium - Dissolved (1)	9.1	0.10	mg/L	4.0	5.3	96	70-130	1	20	01/30/17	
Potassium - Dissolved (1)	5.6	2.0	mg/L	4.0	ND	97	70-130	1	20	01/30/17	
Sodium - Dissolved (1)	180	1.0	mg/L	4.0	180	NR	70-130	2	20	01/30/17	MS1.0 <i>Low</i>
Matrix Spike Dup (A701187-MSD4), So	ource: A7A1924-04										
Calcium - Dissolved (1)	17	0.10	mg/L	4.0	13	98	70-130	3	20	01/30/17	
Magnesium - Dissolved (1)	5.7	0.10	mg/L	4.0	1.8	98	70-130	1	20	01/30/17	
Potassium - Dissolved (1)	4.6	2.0	mg/L	4.0	ND	116	70-130	0	20	01/30/17	
Sodium - Dissolved (1)	7.8	1.0	mg/L	4.0	3.9	97	70-130	2	20	01/30/17	

Certificate of Analysis

Notes:

- The Chain of Custody document and Sample Integrity Sheet are part of the analytical report.
- Any remaining sample(s) for testing will be disposed of according to BSK's sample retention policy unless other arrangements are made in advance.
- All positive results for EPA Methods 504.1 and 524.2 require the analysis of a Field Reagent Blank (FRB) to confirm that the results are not a contamination error from field sampling steps. If Field Reagent Blanks were not submitted with the samples, this method requirement has not been performed.
- · Samples collected by BSK Analytical Laboratories were collected in accordance with the BSK Sampling and Collection Standard Operating Procedures.
- J-value is equivalent to DNQ (Detected, not quantified) which is a trace value. A trace value is an analyte detected between the MDL and the laboratory reporting limit. This result is of an unknown data quality and is only qualitative (estimated). Baseline noise, calibration curve extrapolation below the lowest calibrator, method blank detections, and integration artifacts can all produce apparent DNQ values, which contribute to the un-reliability of these values.
- · (1) Residual chlorine and pH analysis have a 15 minute holding time for both drinking and waste water samples as defined by the EPA and 40 CFR 136. Waste water and ground water (monitoring well) samples must be field filtered to meet the 15 minute holding time for dissolved metals.
- · Summations of analytes (i.e. Total Trihalomethanes) may appear to add individual amounts incorrectly, due to rounding of analyte values occurring before or after the total value is calculated, as well as rounding of the total value.
- RL Multiplier is the factor used to adjust the reporting limit (RL) due to variations in sample preparation procedures and dilutions required for matrix interferences.
- Due to the subjective nature of the Threshold Odor Method, all characterizations of the detected odor are the opinion of the panel of analysts. The characterizations can be found in Standard Methods 2170B Figure 2170:1.
- The MCLs provided in this report (if applicable) represent the primary MCLs for that analyte.

Definitions

mg/L:	Milligrams/Liter (ppm)	MDL:	Method Detection Limit	MDA95:	Min. Detected Activity
mg/Kg:	Milligrams/Kilogram (ppm)	RL:	Reporting Limit: DL x Dilution	MPN:	Most Probable Number
μg/L:	Micrograms/Liter (ppb)	ND:	None Detected at RL	CFU:	Colony Forming Unit
μg/Kg:	Micrograms/Kilogram (ppb)	pCi/L:	Picocuries per Liter	Absent:	Less than 1 CFU/100mLs
%:	Percent Recovered (surrogates)	RL Mult:	RL Multiplier	Present:	1 or more CFU/100mLs
NR:	Non-Reportable	MCL:	Maximum Contaminant Limit		

Please see the individual Subcontract Lab's report for applicable certifications.

BSK is not accredited under the NELAP program for the following parameters:

Certifications: Please refer to our website for a copy of our Accredited Fields of Testing under each certification.

Fresno

State of California - ELAP	1180	State of Hawaii	4021
State of Nevada	CA000792016-1	State of Oregon - NELAP	4021
EPA - UCMR3	CA00079	State of Washington	C997-16
Sacramento			
State of California - ELAP	2435		
San Bernardino			
State of California - ELAP	2993	State of Oregon - NELAP	4119-001
Vancouver			
State of Oregon - NELAP	WA100008-008	State of Washington	C824-16

A7A1672 FINAL 01312017 1416

Printed: 1/31/2017

01182017

geico8314

Turnaround: Standard

Due Date: 2/1/2017

GEI Consultants

ASSOCIA

	Celt: 415-420-2154	916-631-4528	Richard Shate	Report Attention*:	-\
Г		and the state of t	1	*Required Fields Temp: (-)	
Pá			Date needed:		/ E S
age		·	Rush (Surcharge may apply)	www.bskassociates.com	∤ 1 ∜
15			X Standard - 10 business days	(559) 497-2888 · Fax (559) 497-2893	
5 0	10	A/810/2	Turnaround Time Request	1414 Stanislaus St., Fresno, CA 93706	and the state of t
f 10	01/18/2017	A 7 A 1677			
ô					

Compatibility Fine: Compatibi						Custody Seal: Y 🖎	Custo			Courier:_	FED EX	WALK-IN	٦	NIBATO		Shipping Method:	72
Consolitations, Fine. Consolitations Fine Consolitations Consolit		/ Cash	Check	PIA#		Amount	ر	Payment Received at Delivery. Date		Date		多大学	Se Se	and Printed Name)	Signatus	Received to	77
Companishments Finc. Regard attentions: Additional Stract 2 Regard attentions: Additional Stract 2 Regard attentions: Regard			Company				 	Received by: (Signature and Printed Name		PHA	*	Company BAKS		Printed Name)	Signature and	Relinquished	T.
Consolibrity, Fin	1)	184	Company		10	1	2	Received by Signature and Printed Name		tl) trl)	Herats	GET CONS	rich	Printed Name)	Shed by: (Signature and I	Relinquished	7
Consultants, Inc. Reput Many Prospect Park Drive, Suite to Regulatory Corrollors Regulatory County Regulatory Corrollors Regulatory Co			1	grach				- Carbon	1 1								Т Т
Consultants, Inc. Replant Structure Repla				, ,	\downarrow		+										1
Consolitants, Inc. Report Alaminon Frieman Politic ST4																	1
Consultants, Inc. Report Attention Fig. ruman Additional cris Prospect Park Drive, Suite too Rancho Cordova CA 95670 Be Sampling 1st arr. Placer County By Eddit present your completed results? By Swamp Edd Excel By Eddit present your completed results? By Eddit present your completed results? By Eddit present your completed results? Regulatory Carbon Copies Regulatory Completing Water) By Eddit present your completed results? Regulatory Carbon Copies Regulatory Completing Water on Trime Present to Gallonius SWRCB (Drinking Water) By Eddit present your completed results? Regulatory Completing SWRCB (Drinking Water) By Eddit present your completed results? Regulatory Completing SWRCB (Drinking Water) Both Time Matrix* Comments / Station Code / WTRAX WHY/17 10:45 GNW Why-3A MW-3A MW		A A A A A A A A A A A A A A A A A A A															1
Consoliburts, Inc. Report Attention Fig. ruman Additional cris Prospect Park Drive, Suite to be Rancho Cordova CA Shat 2 City: Prospect Park Drive, Suite to be Rancho Cordova CA 956 70 Be Sampling 1st Arr. Placer County By Summp Settle Excel By Summp Settle Excel By Summp Settle Excel By Summp Settle Excel By EDD Type State Excel By Sample Drive SW-Strace Water BW-Strace Water W-Sampled Sampled Sampl																	
Consultants, Inc. Reput Alenton's Fairman Additional cris Richard Shatz Fig. Reputation's Fairman Additional cris Richard Shatz Fig. Share's For Speck Payk Drive, State too Rolls: Reputation Cordova Richard Shatz Fig. Share's For Speck Payk Drive, State too Rolls: Reputation Cordova NA NA NA NITA/11 10:45 GNU No Preservation NITA/11 18:00 GNU NITA/1						-			/					\			
Consolibrats, Inc. Report Author Forman Post																	
Compalitants, Inc. Report Attention*; Fairman Additional cds. Additiona								The state of the s									-
Additional cass Consolitants, Inc. Report Attention*; Fairman Professor							<u> </u>										
Report Attention: Consultants, Inc. Report Attention: Additional ccs. Additio						<	<			1		1/41/		3A	- MMd		_
Regard Attention: Compalitants, Inc. Report Attention: Additional ccs Additional ccs Prince Speck Park Drive, Suite too Rouncho Covdova CA 95670 Regulatory County Regulatory Carbon Copies Regulatory Compliance System Number: N/A Matrix Types SW-Surface Water BW-Bottled Water GW-Ground Water Water Water SW-Storm Water DW-Drinking Water SU-Solid Sample Description* Matrix* Comments / Station Code / WTRAX 1/16/17 10:45 GW No Preservative					<		<	8		SW.		1/41/			アアーコ	エ	~
Additional ccs Additional ccs Additional ccs PC Spack Park Drive Suite too Rancho Cordova CA 95670 State:					<		<	rservative	₹			1/41/1		2	w 3-	N 8	_ 1
Consultants, Inc. Report Attention: Project Free Project						<	<	**************************************		L		1/10/1		8	J - te1		
Consultants, Inc. Report Attention*					_	<	<			S	=	1/16/1-		1	- MMdo	<u> </u>	
Consultants, Inc. Report Attention: Additional cis. Additional cis. Fire speck Park Drive, Swife to Rancho Cordova CA State: Zip: City: Regulatory Cardy 1610374 1610					Me	M.	6			Matrix	mple	Date	escription*	Sample De		#	
Consultants, Inc. Report Attention: Additional cis. Additional cis. Fire speck Park Drive, Swife to Sancho Cordova CA State: Prospect Park Drive, Swife to Regulatory Cardon Copies Begulatory Cardon Copies Regulatory Cardon SwarCB (Drinking Water) System Number: N/A Ho Dado					Ha	eł	en		er DW=Drink	/=Storm Wat	ste Water STV	W=Ground Water WW=Wa	ater BW=Bottled Water C	pes: SW=Surface Wa	Matrix Ty		1
Report Attention: Consoliborits, Thic. Additional cis.					ds, l	als	era			Lulai e vo		Other:	S	Park		Dennis	
Name: Consultants, Inc. Report Attention: Additional costs Additional costs Additional costs Additional costs Fige of Spect Park Drive, Swife too Rancho Cordova CA 95670 State: Zip: Prospect Park Drive, Swife too Rancho Cordova CA 95670 Begulatory Caruth 1610374 Begulatory Caruth Regulatory Carbon Copies Regulatory Carbon Copies Regulatory Compliance Regulatory Carbon Copies Regulatory Compliance Regulatory Compliance Regulatory Carbon Copies But to California SWRCB (Drinking Water) But to California SWRCB (Drinking Water)					Лn	, F	٠,			Fresno C	~~~				ame (Printed/Sig	ampler Na	(A)
Consultants, Inc. Report Attention: Additional case Ad					412	آ المح	Mir	to California SWRCB (Drinking Water)	□ EDT	l pes	orinking Water)	SWRCB (EDD Type: Stol G]swamp X]∈	Trace (J-Flag)	Trace (J-Fig	
Consultants, Inc. Additional costs Prospect Park Drive, Swite 400 Rancho Cordova CA 95670					eved	red	eral		Mow wor		7	bury 161037	+ arr; Placer (tel Buildum	wa Sa	W P C	
Name: Report Attention: David Fairman Richard Shatz Consultants, Inc. Additional cis. Richard Shatz 1610374						>	ــــــ رج	45670 db:		rdova	cho Co	te too fan	Drive, Sui	med Park	8 Prosp	2868	~
David Fairman Richard Shatz 916-631-4528		ants, com	consulta	ne gei	www.	dfa	E-mai		FOI C		242	Additional cc's: Richard SI		1 5000	, CAV 34	707	
		420-2154	-514:113º		-4528	1.631	Phon Phon	ind shatz	Invoice To		man	Report Attention*	C .	think In	Company/Client Name*:	company/c	$\overline{}$

10

BSK Associates SR-FL-0002-18

Sample Integrity

BSK Bottles: Yes No Page Was temperature within range? Were correct containers and preservatives Yes No NA (∕es No NA Chemistry ≤ 6°C Micro < 8°C received for the tests requested? If samples were taken today, is there evidence Were there bubbles in the VOA vials? No (NA) Yes No NO Yes that chilling has begun? (Volatiles Only) Yes No Was a sufficient amount of sample received? Yes No Did all bottles arrive unbroken and intact? Do samples have a hold time <72 hours? Did all bottle labels agree with COC? Yes M **(49**6 No Was PM notified of discrepancies? Was sodium thiosulfate added to CN sample(s) No NA Yes No NO Yes until chlorine was no longer present? PM: By/Time: 250ml(A) 500ml(B) 1Liter(C) 40ml VOA(V) Checks Passed? 1-5 Bacti Na₂S₂O₃ None (P)White Cap Cr6 (P) Lt. Green Label/Blue Cap NH4OH(NH4)2SO4 DW Cl. pH > 8 N Cr6 (P) Pink Label/Blue Cap pH 9.3-9.7 NH4OH(NH4)2SO4 WW Cr6 (P) Black Label/Blue Cap NH4OH(NH4)2SO4 7199 pH 9.0-9.5 N ***24 HOUR HOLD TIME*** HNO₃ (P) Red Ca or HCI (P) Purple Cap/Lt. Blue Label 18 H_2SO_4 (P) or (AG) Yellow Cap/Label pH < 2 Y N NaOH (P) Green Cap Cl, pH >10 Υ NaOH + ZnAc (P) Ν 9 < Hq Dissolved Oxygen 300ml (g) None (AG) 608/8081/8082, 625, 632/8321, 8151, 8270 **Bottles Received** HCI (AG)Lt. Blue Label O&G, Diesel Ascorbic, EDTA, KH2Ct (AG)Pink Label 525 Na₂SO₃ 250mL (AG)^{Neon Green Label} 515 Na₂S₂O₃ 1 Liter (Brown P) 549 Na₂S₂O₃ (AG)^{Blue Label} 548, THM, 524 Na₂S₂O₃ (CG) Blue Label 504, 505, 547 Na₂S₂O₃ + MCAA (CG)^{Orange Label} 531 pH < 3NH₄CI (AG)^{Purple Label} 552 EDA (AG)Brown Label DBPs HCL (CG) 524.2,BTEX,Gas, MTBE, 8260/624 Buffer pH 4 (CG) H₃PO₄ (CG)^{Salmon Label} Other: Asbestos 1Liter Plastic w/ Foil Low Level Hg / Metals Double Baggie Bottled Water 250mL / 500mL / 1 Liter Clear Glass Soil Tube Brass / Steel / Plastic Tedlar Bag / Plastic Bag Preservative Date/Time/Initials Container Preservative Date/Time/Initials Container Split SP SP S P SP Comments Labeled by: _____@1437 Labels checked by: Twu @ LYSY 2 RUSH Paged by:_____

A7E0202 5/15/2017

Invoice: A711549

David Fairman GEI Consultants 2868 Prospect Park Drive, Suite 400 Rancho Cordova, CA 95670

RE: Report for A7E0202 WPC WQ sampling Fall 2016

Dear David Fairman,

Thank you for using BSK Associates for your analytical testing needs. In the following pages, you will find the test results for the samples submitted to our laboratory on 5/2/2017. The results have been approved for release by our Laboratory Director as indicated by the authorizing signature below.

The samples were analyzed for the test(s) indicated on the Chain of Custody (see attached) and the results relate only to the samples analyzed. BSK certifies that the testing was performed in accordance with the quality system requirements specified in the 2009 TNI Standard. Any deviations from this standard or from the method requirements for each test procedure performed will be annotated alongside the analytical result or noted in the Case Narrative. Unless otherwise noted, the sample results are reported on an "as received" basis.

If additional clarification of any information is required, please contact your Project Manager, Adam Trevarrow, at (800) 877-8310 or (559) 497-2888 x116.

Thanks again for using BSK Associates. We value your business and appreciate your loyalty.

Sincerely,

Adam Trevarrow, Project Manager

Accredited in Accordance with NELAP ORELAP #4021

QA-RP-0001-10 Final.rpt

Case Narrative

Project and Report Details Invoice Details

Client:GEI ConsultantsInvoice To: GEI ConsultantsReport To:David FairmanInvoice Attn: Richard ShatzProject #:1610373Project PO#: 1610373

Received: 5/02/2017 - 11:30 Report Due: 5/16/2017

Sample Receipt Conditions

Cooler: Default Cooler Containers Intact

Temperature on Receipt °C: 0.0 COC/Labels Agree
Preservation Confirmed

Preservation Confirmed Received On Wet Ice

Packing Material - Bubble Wrap

Packing Material - Foam

Sample(s) were received in temperature range.

Initial receipt at BSK-SAC

Data Qualifiers

The following qualifiers have been applied to one or more analytical results:

DP1.1 Sample Duplicate RPD exceeded method acceptance criteria.

HT1.3 Holding time exceeded. Sample was analyzed past the holding time.

MS1.0 Matrix spike recoveries exceed control limits.

MS1.4 Matrix spike recovery data unreliable due to significant parent sample concentration relative to fortification level (>4x).

Report Distribution

Recipient(s)	Report Format	CC:	
Richard Shatz	FINAL.RPT		
David Fairman	FINAL.RPT		
Sandy St. Hilaire	FINAL.RPT		

1610373

Certificate of Analysis

Sample ID: A7E0202-01
Sampled By: Dennis Ho
Sample Description: MW 3-2

Sample Date - Time: 04/28/17 - 10:22

Matrix: Ground Water

Sample Type: Grab

BSK Associates Laboratory Fresno General Chemistry

Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed	Qual
Alkalinity as CaCO3	SM 2320B	280	3.0	mg/L	1	A705412	05/02/17	05/02/17	
Bicarbonate as CaCO3	SM 2320B	280	3.0	mg/L	1	A705412	05/02/17	05/02/17	
Carbonate as CaCO3	SM 2320B	ND	3.0	mg/L	1	A705412	05/02/17	05/02/17	
Hydroxide as CaCO3	SM 2320B	ND	3.0	mg/L	1	A705412	05/02/17	05/02/17	
Chloride	EPA 300.0	38	1.0	mg/L	1	A705624	05/06/17	05/06/17	
Conductivity @ 25C	SM 2510B	850	1.0	umhos/cm	1	A705412	05/02/17	05/02/17	
pH (1)	SM 4500-H+ B	7.6		pH Units	1	A705412	05/02/17	05/02/17	
pH Temperature in °C		23.8							
Sulfate as SO4	EPA 300.0	98	1.0	mg/L	1	A705624	05/06/17	05/06/17	
Total Dissolved Solids	SM 2540C	550	5.0	mg/L	1	A705448	05/03/17	05/08/17	

					RL				
Analyte	Method	Result	RL	Units	Mult	Batch	Prepared	Analyzed	Qual
Calcium - Dissolved (1)	EPA 200.7	64	0.10	mg/L	1	A705700	05/09/17	05/10/17	
Hardness as CaCO3, Dissolved	SM 2340B	350	0.41	mg/L					
Magnesium - Dissolved (1)	EPA 200.7	46	0.10	mg/L	1	A705700	05/09/17	05/10/17	
Potassium - Dissolved (1)	EPA 200.7	ND	2.0	mg/L	1	A705700	05/09/17	05/10/17	
Sodium - Dissolved (1)	EPA 200.7	57	1.0	mg/L	1	A705700	05/09/17	05/10/17	

1610373

Certificate of Analysis

Sample ID: A7E0202-02
Sampled By: Dennis Ho
Sample Description: MW 4

Sample Date - Time: 04/28/17 - 11:30

Matrix: Ground Water

Sample Type: Grab

BSK Associates Laboratory Fresno General Chemistry

Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed Qual
Alkalinity as CaCO3	SM 2320B	420	3.0	mg/L	1	A705412	05/02/17	05/02/17
Bicarbonate as CaCO3	SM 2320B	420	3.0	mg/L	1	A705412	05/02/17	05/02/17
Carbonate as CaCO3	SM 2320B	ND	3.0	mg/L	1	A705412	05/02/17	05/02/17
Hydroxide as CaCO3	SM 2320B	ND	3.0	mg/L	1	A705412	05/02/17	05/02/17
Chloride	EPA 300.0	380	1.0	mg/L	1	A705624	05/05/17	05/05/17
Conductivity @ 25C	SM 2510B	2000	1.0	umhos/cm	1	A705412	05/02/17	05/02/17
pH (1)	SM 4500-H+ B	7.4		pH Units	1	A705412	05/02/17	05/02/17
pH Temperature in °C		23.9						
Sulfate as SO4	EPA 300.0	77	1.0	mg/L	1	A705624	05/05/17	05/05/17
Total Dissolved Solids	SM 2540C	1200	5.0	mg/L	1	A705448	05/03/17	05/08/17

					RL				
Analyte	Method	Result	RL	Units	Mult	Batch	Prepared	Analyzed	Qual
Calcium - Dissolved (1)	EPA 200.7	140	0.10	mg/L	1	A705700	05/09/17	05/10/17	
Hardness as CaCO3, Dissolved	SM 2340B	710	0.41	mg/L					
Magnesium - Dissolved (1)	EPA 200.7	89	0.10	mg/L	1	A705700	05/09/17	05/10/17	
Potassium - Dissolved (1)	EPA 200.7	ND	2.0	mg/L	1	A705700	05/09/17	05/10/17	
Sodium - Dissolved (1)	EPA 200.7	170	1.0	mg/L	1	A705700	05/09/17	05/10/17	

1610373

Certificate of Analysis

Sample ID: A7E0202-03
Sampled By: Dennis Ho
Sample Description: SVMW-2C

Sample Date - Time: 04/26/17 - 17:31

Matrix: Ground Water

Sample Type: Grab

BSK Associates Laboratory Fresno General Chemistry

Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed	Qual
Alkalinity as CaCO3	SM 2320B	93	3.0	mg/L	1	A705412	05/02/17	05/02/17	
Bicarbonate as CaCO3	SM 2320B	93	3.0	mg/L	1	A705412	05/02/17	05/02/17	
Carbonate as CaCO3	SM 2320B	ND	3.0	mg/L	1	A705412	05/02/17	05/02/17	
Hydroxide as CaCO3	SM 2320B	ND	3.0	mg/L	1	A705412	05/02/17	05/02/17	
Chloride	EPA 300.0	540	2.0	mg/L	2	A705624	05/06/17	05/06/17	
Conductivity @ 25C	SM 2510B	2000	1.0	umhos/cm	1	A705412	05/02/17	05/02/17	
pH (1)	SM 4500-H+ B	7.8		pH Units	1	A705412	05/02/17	05/02/17	
pH Temperature in °C		23.8							
Sulfate as SO4	EPA 300.0	ND	1.0	mg/L	1	A705624	05/06/17	05/06/17	
Total Dissolved Solids	SM 2540C	1300	5.0	mg/L	1	A705448	05/03/17	05/08/17	

Analysis	Method	Decul	D.	Unite	RL	Dotah	Dansanad	Ameliana	Overl
Analyte	Method	Result	RL	Units	Mult	Batch	Prepared	Analyzed	Quai
Calcium - Dissolved (1)	EPA 200.7	110	0.10	mg/L	1	A705700	05/09/17	05/10/17	MS1.4
Hardness as CaCO3, Dissolved	SM 2340B	350	0.41	mg/L					
Magnesium - Dissolved (1)	EPA 200.7	21	0.10	mg/L	1	A705700	05/09/17	05/10/17	
Potassium - Dissolved (1)	EPA 200.7	4.4	2.0	mg/L	1	A705700	05/09/17	05/10/17	
Sodium - Dissolved (1)	EPA 200.7	250	1.0	mg/L	1	A705700	05/09/17	05/10/17	MS1.4

1610373

Certificate of Analysis

Sample ID: A7E0202-04
Sampled By: Dennis Ho

Sample Description: WPMW - 3A

Sample Date - Time: 04/28/17 - 12:35

Matrix: Ground Water

Sample Type: Grab

BSK Associates Laboratory Fresno General Chemistry

Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed Qual
Alkalinity as CaCO3	SM 2320B	91	3.0	mg/L	1	A705412	05/02/17	05/02/17
Bicarbonate as CaCO3	SM 2320B	91	3.0	mg/L	1	A705412	05/02/17	05/02/17
Carbonate as CaCO3	SM 2320B	ND	3.0	mg/L	1	A705412	05/02/17	05/02/17
Hydroxide as CaCO3	SM 2320B	ND	3.0	mg/L	1	A705412	05/02/17	05/02/17
Chloride	EPA 300.0	740	2.0	mg/L	2	A705624	05/06/17	05/06/17
Conductivity @ 25C	SM 2510B	3000	1.0	umhos/cm	1	A705412	05/02/17	05/02/17
pH (1)	SM 4500-H+ B	7.7		pH Units	1	A705412	05/02/17	05/02/17
pH Temperature in °C		23.9						
Sulfate as SO4	EPA 300.0	180	2.0	mg/L	2	A705624	05/06/17	05/06/17
Total Dissolved Solids	SM 2540C	1900	5.0	mg/L	1	A705448	05/03/17	05/08/17

					RL			
Analyte	Method	Result	RL	Units	Mult	Batch	Prepared	Analyzed Qual
Calcium - Dissolved (1)	EPA 200.7	170	0.10	mg/L	1	A705700	05/09/17	05/10/17
Hardness as CaCO3, Dissolved	SM 2340B	610	0.41	mg/L				
Magnesium - Dissolved (1)	EPA 200.7	44	0.10	mg/L	1	A705700	05/09/17	05/10/17
Potassium - Dissolved (1)	EPA 200.7	4.6	2.0	mg/L	1	A705700	05/09/17	05/10/17
Sodium - Dissolved (1)	EPA 200.7	370	1.0	mg/L	1	A705700	05/09/17	05/10/17

1610373

Certificate of Analysis

Sample ID: A7E0202-05 Sampled By: Dennis Ho

Sample Description: WPMW - 5B

Sample Date - Time: 04/27/17 - 10:12

Matrix: Ground Water

Sample Type: Grab

BSK Associates Laboratory Fresno General Chemistry

Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed	Qual
Alkalinity as CaCO3	SM 2320B	110	3.0	mg/L	1	A705412	05/02/17	05/02/17	
Bicarbonate as CaCO3	SM 2320B	110	3.0	mg/L	1	A705412	05/02/17	05/02/17	
Carbonate as CaCO3	SM 2320B	ND	3.0	mg/L	1	A705412	05/02/17	05/02/17	
Hydroxide as CaCO3	SM 2320B	ND	3.0	mg/L	1	A705412	05/02/17	05/02/17	
Chloride	EPA 300.0	370	1.0	mg/L	1	A705624	05/05/17	05/05/17	
Conductivity @ 25C	SM 2510B	1400	1.0	umhos/cm	1	A705412	05/02/17	05/02/17	
pH (1)	SM 4500-H+ B	7.9		pH Units	1	A705412	05/02/17	05/02/17	
pH Temperature in °C		23.9							
Sulfate as SO4	EPA 300.0	ND	1.0	mg/L	1	A705624	05/05/17	05/05/17	
Total Dissolved Solids	SM 2540C	830	5.0	mg/L	1	A705448	05/03/17	05/08/17	

Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed	Qual
Calcium - Dissolved (1)	EPA 200.7	55	0.10	mg/L	1	A705700	05/09/17	05/10/17	
Hardness as CaCO3, Dissolved	SM 2340B	170	0.41	mg/L					
Magnesium - Dissolved (1)	EPA 200.7	8.3	0.10	mg/L	1	A705700	05/09/17	05/10/17	
Potassium - Dissolved (1)	EPA 200.7	3.0	2.0	mg/L	1	A705700	05/09/17	05/10/17	
Sodium - Dissolved (1)	EPA 200.7	220	1.0	mg/L	1	A705700	05/09/17	05/11/17	

1610373

Certificate of Analysis

Sample ID: A7E0202-06
Sampled By: Dennis Ho
Sample Description: W77 - 8

Sample Date - Time: 04/27/17 - 13:00

Matrix: Ground Water

Sample Type: Grab

BSK Associates Laboratory Fresno General Chemistry

Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed	Qual
Alkalinity as CaCO3	SM 2320B	110	3.0	mg/L	1	A705412	05/02/17	05/02/17	
Bicarbonate as CaCO3	SM 2320B	110	3.0	mg/L	1	A705412	05/02/17	05/02/17	
Carbonate as CaCO3	SM 2320B	ND	3.0	mg/L	1	A705412	05/02/17	05/02/17	
Hydroxide as CaCO3	SM 2320B	ND	3.0	mg/L	1	A705412	05/02/17	05/02/17	
Chloride	EPA 300.0	380	1.0	mg/L	1	A705620	05/06/17	05/06/17	
Conductivity @ 25C	SM 2510B	1500	1.0	umhos/cm	1	A705412	05/02/17	05/02/17	
pH (1)	SM 4500-H+ B	7.7		pH Units	1	A705412	05/02/17	05/02/17	
pH Temperature in °C		23.9							
Sulfate as SO4	EPA 300.0	ND	1.0	mg/L	1	A705620	05/06/17	05/06/17	
Total Dissolved Solids	SM 2540C	960	5.0	mg/L	1	A705448	05/03/17	05/08/17	

					RL				
Analyte	Method	Result	RL	Units	Mult	Batch	Prepared	Analyzed	Qual
Calcium - Dissolved (1)	EPA 200.7	71	0.10	mg/L	1	A705700	05/09/17	05/10/17	
Hardness as CaCO3, Dissolved	SM 2340B	320	0.41	mg/L					
Magnesium - Dissolved (1)	EPA 200.7	34	0.10	mg/L	1	A705700	05/09/17	05/10/17	
Potassium - Dissolved (1)	EPA 200.7	4.4	2.0	mg/L	1	A705700	05/09/17	05/10/17	
Sodium - Dissolved (1)	EPA 200.7	140	1.0	mg/L	1	A705700	05/09/17	05/11/17	

BSK Associates Laboratory Fresno General Chemistry Quality Control Report

				Spike	Source		%REC		RPD	Date
Analyte	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Analyzed Qual
		EPA 30	00.0 - Q	uality Co	ntrol					
Batch: A705624										Prepared: 5/5/201
Prep Method: Method Specific Prepara	ation									Analyst: BCI
Blank Cuike (A705004 BC4)										
Blank Spike (A705624-BS1)	100	1.0	ma/l	100		101	00 110			05/05/17
Chloride Sulfate as SO4	100 100	1.0 1.0	mg/L mg/L	100 100		101 101	90-110 90-110			05/05/17
sunate as so !	100	1.0	mg/L	100		101	00 110			00/00/11
Matrix Spike (A705624-MS1), Source: A										
Chloride	56	1.0	mg/L	50	5.4	102	80-120			05/05/17
Sulfate as SO4	54	1.0	mg/L	50	3.6	101	80-120			05/05/17
Matrix Spike (A705624-MS2), Source: A	A7E0755-05									
Chloride	53	1.0	mg/L	50	2.9	100	80-120			05/05/17
Sulfate as SO4	53	1.0	mg/L	50	2.9	99	80-120			05/05/17
Matrix Spike Dup (A705624-MSD1), So	urce: A7E0755-04									
Chloride	56	1.0	mg/L	50	5.4	101	80-120	1	20	05/05/17
Sulfate as SO4	54	1.0	mg/L	50	3.6	100	80-120	1	20	05/05/17
Matrix Spike Dup (A705624-MSD2), So		4.0		50	0.0	00	00.400		00	05/05/47
Chloride Sulfate as SO4	52 52	1.0 1.0	mg/L	50 50	2.9 2.9	99 98	80-120 80-120	1 1	20 20	05/05/17 05/05/17
Suilate as 304	32	1.0	mg/L	50	2.9	90	00-120	'	20	05/05/17
		SM 23	20B - Q	uality Co	ntrol					
Batch: A705412										Prepared: 5/2/201
Prep Method: Method Specific Prepara	ation									Analyst: CE0
Blank (A705412-BLK1)										
Alkalinity as CaCO3	ND	3.0	mg/L							05/02/17
Bicarbonate as CaCO3	ND	3.0	mg/L							05/02/17
Carbonate as CaCO3	ND	3.0	mg/L							05/02/17
Hydroxide as CaCO3	ND	3.0	mg/L							05/02/17
Blank Spike (A705412-BS1)										
Alkalinity as CaCO3	97	3.0	mg/L	100		97	80-120			05/02/17
Blank Spike Dup (A705412-BSD1)										
Alkalinity as CaCO3	96	3.0	mg/L	100		96	80-120	1	20	05/02/17
Dumlicata (A705442 DUD4), Carrer - 45	7E0467 04									
Duplicate (A705412-DUP1), Source: A7 Alkalinity as CaCO3	200	3.0	mg/L		200			0	10	05/02/17
Bicarbonate as CaCO3	200	3.0	mg/L		190			1	10	05/02/17
Carbonate as CaCO3	ND	3.0	mg/L		3.6			75	10	05/02/17 DP1.1
Hydroxide as CaCO3	ND	3.0	mg/L		ND				10	05/02/17
		SM 25	10R - O	uality Co	ntrol					
Batch: A705412		GIVI 23	יטט - ע	danty OU						Prepared: 5/2/201
Prep Method: Method Specific Prepara	otion									Analyst: CE0

A7E0202 FINAL 05152017 1623

Printed: 5/15/2017

QA-RP-0001-10 Final.rpt

BSK Associates Laboratory Fresno General Chemistry Quality Control Report

Analyte	Result	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Date Analyzed Qual
		SM 25	10B - Qu	ality Co	ntrol					
Batch: A705412										Prepared: 5/2/2017
Prep Method: Method Specific Preparation	n									Analyst: CEG
Blank Spike (A705412-BS1)										
Conductivity @ 25C	1400	1.0	umhos/c m	1400		101	90-110			05/02/17
Blank Spike Dup (A705412-BSD1)										
Conductivity @ 25C	1400	1.0	umhos/c m	1400		100	90-110	1		05/02/17
Duplicate (A705412-DUP1), Source: A7E0	167-01									
Conductivity @ 25C	760	1.0	umhos/c m		770			1	20	05/02/17
		SM 25	40C - Qu	ality Co	ntrol					
Batch: A705448										Prepared: 5/3/2017
Prep Method: Method Specific Preparation	n									Analyst: DEH
Blank (A705448-BLK1)										
Total Dissolved Solids	ND	5.0	mg/L							05/08/17
Blank Spike (A705448-BS1)										
Total Dissolved Solids	990	5.0	mg/L	1000		99	70-130			05/08/17
Duplicate (A705448-DUP1), Source: A7E0	103-01									
Total Dissolved Solids	48	5.0	mg/L		47			2	20	05/08/17
Duplicate (A705448-DUP2), Source: A7E0	111-01									
Total Dissolved Solids	43	5.0	mg/L		41			5	20	05/08/17
		SM 4500)-H+ B - (Quality C	ontrol					
Batch: A705412 Prep Method: Method Specific Preparatio	n			-						Prepared: 5/2/2017 Analyst: CEG
Duplicate (A705412-DUP1), Source: A7E0	167-01									
pH (1)	8.3		pH Units		8.3			0	20	05/02/17

BSK Associates Laboratory Fresno Metals Quality Control Report

				Spike	Source		%REC		RPD	Date	
Analyte	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Analyzed	Qual
		EPA 20	00.7 - Q	uality Co	ntrol						
Batch: A705700										Prepar	ed: 5/9/201
Prep Method: Filtration - Metals										Aı	nalyst: MD
Blank (A705700-BLK2)											
Calcium - Dissolved (1)	ND	0.10	mg/L							05/10/17	
Magnesium - Dissolved (1)	ND	0.10	mg/L							05/10/17	
Potassium - Dissolved (1)	ND	2.0	mg/L							05/10/17	
Sodium - Dissolved (1)	ND	1.0	mg/L							05/10/17	
Blank Spike (A705700-BS2)											
Calcium - Dissolved (1)	3.8	0.10	mg/L	4.0		96	85-115			05/10/17	
Magnesium - Dissolved (1)	4.1	0.10	mg/L	4.0		103	85-115			05/10/17	
Potassium - Dissolved (1)	4.0	2.0	mg/L	4.0		99	85-115			05/10/17	
Sodium - Dissolved (1)	3.9	1.0	mg/L	4.0		98	85-115			05/10/17	
Blank Spike Dup (A705700-BSD2)											
Calcium - Dissolved (1)	3.9	0.10	mg/L	4.0		98	85-115	2	20	05/10/17	
Magnesium - Dissolved (1)	4.3	0.10	mg/L	4.0		108	85-115	4	20	05/10/17	
Potassium - Dissolved (1)	4.2	2.0	mg/L	4.0		105	85-115	6	20	05/10/17	
Sodium - Dissolved (1)	4.0	1.0	mg/L	4.0		101	85-115	3	20	05/10/17	
Matrix Spike (A705700-MS3), Sour	ce: A7E0202-03										
Calcium - Dissolved (1)	110	0.10	mg/L	4.0	110	16	70-130			05/10/17	MS1.0 Low
Magnesium - Dissolved (1)	25	0.10	mg/L	4.0	21	106	70-130			05/10/17	
Potassium - Dissolved (1)	8.5	2.0	mg/L	4.0	4.4	103	70-130			05/10/17	
Sodium - Dissolved (1)	240	1.0	mg/L	4.0	250	NR	70-130			05/10/17	MS1.0 <i>Low</i>
Matrix Spike (A705700-MS4), Sour	ce: A7E0256-02										
Calcium - Dissolved (1)	580	0.10	mg/L	4.0	550	749	70-130			05/10/17	MS1.0 High
Magnesium - Dissolved (1)	410	0.10	mg/L	4.0	400	155	70-130			05/10/17	MS1.0 High
Potassium - Dissolved (1)	20	2.0	mg/L	4.0	15	122	70-130			05/10/17	
Sodium - Dissolved (1)	700	1.0	mg/L	4.0	680	499	70-130			05/10/17	MS1.0 <i>High</i>
Matrix Spike Dup (A705700-MSD3)	, Source: A7E0202-03										
Calcium - Dissolved (1)	110	0.10	mg/L	4.0	110	128	70-130	4	20	05/10/17	
Magnesium - Dissolved (1)	25	0.10	mg/L	4.0	21	99	70-130	1	20	05/10/17	
Potassium - Dissolved (1)	8.5	2.0	mg/L	4.0	4.4	104	70-130	1	20	05/10/17	
Sodium - Dissolved (1)	250	1.0	mg/L	4.0	250	148	70-130	3	20	05/10/17	MS1.0 <i>High</i>
Matrix Spike Dup (A705700-MSD4)	, Source: A7E0256-02										
Calcium - Dissolved (1)	580	0.10	mg/L	4.0	550	817	70-130	1	20	05/10/17	MS1.0 High
Magnesium - Dissolved (1)	420	0.10	mg/L	4.0	400	374	70-130	2	20	05/10/17	MS1.0 High
Potassium - Dissolved (1)	20	2.0	mg/L	4.0	15	130	70-130	2	20	05/10/17	
Sodium - Dissolved (1)	700	1.0	mg/L	4.0	680	567	70-130	0	20	05/10/17	Higl

BSK Associates Laboratory Fresno Organics Quality Control Report

				Spike	Source		%REC		RPD	Date	
Analyte	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Analyzed	Qual
		EPA 52	24.2 - Q	uality Co	ntrol						
Batch: A705478										Prepare	ed: 5/3/201
Prep Method: EPA 524.2										Ar	nalyst: ANI
Blank (A705478-BLK1)											
Bromodichloromethane	ND	0.50	ug/L							05/03/17	
Bromoform	ND	0.50	ug/L							05/03/17	
Chloroform	ND	0.50	ug/L							05/03/17	
Dibromochloromethane	ND	0.50	ug/L							05/03/17	
Surrogate: 1,2-Dichlorobenzene-d4	49			50		97	70-130			05/03/17	
Surrogate: Bromofluorobenzene	49			50		98	70-130			05/03/17	
Blank Spike (A705478-BS1)											
Bromodichloromethane	11	0.50	ug/L	10		114	70-130			05/03/17	
Bromoform	12	0.50	ug/L	10		118	70-130			05/03/17	
Chloroform	11	0.50	ug/L	10		113	70-130			05/03/17	
Dibromochloromethane	11	0.50	ug/L	10		114	70-130			05/03/17	
Surrogate: 1,2-Dichlorobenzene-d4	55		_	50		109	70-130			05/03/17	
Surrogate: Bromofluorobenzene	55			50		110	70-130			05/03/17	
Blank Spike Dup (A705478-BSD1)											
Bromodichloromethane	10	0.50	ug/L	10		100	70-130	13	30	05/03/17	
Bromoform	11	0.50	ug/L	10		107	70-130	10	30	05/03/17	
Chloroform	10	0.50	ug/L	10		100	70-130	12	30	05/03/17	
Dibromochloromethane	10	0.50	ug/L	10		102	70-130	11	30	05/03/17	
Surrogate: 1,2-Dichlorobenzene-d4	49		Ū	50		97	70-130			05/03/17	
Surrogate: Bromofluorobenzene	50			50		101	70-130			05/03/17	
Matrix Spike (A705478-MS1), Source:	A7E0215-01										
Bromodichloromethane	12	0.50	ug/L	10	ND	119	47-151			05/03/17	
Bromoform	12	0.50	ug/L	10	ND	121	29-162			05/03/17	
Chloroform	30	0.50	ug/L	10	18	127	52-148			05/03/17	
Dibromochloromethane	12	0.50	ug/L	10	ND	118	44-149			05/03/17	
Surrogate: 1,2-Dichlorobenzene-d4	55		- 5 =	50		111	70-130			05/03/17	
Surrogate: Bromofluorobenzene	56			50		112	70-130			05/03/17	

Certificate of Analysis

Notes:

- The Chain of Custody document and Sample Integrity Sheet are part of the analytical report.
- Any remaining sample(s) for testing will be disposed of according to BSK's sample retention policy unless other arrangements are made in advance.
- All positive results for EPA Methods 504.1 and 524.2 require the analysis of a Field Reagent Blank (FRB) to confirm that the results are not a contamination error from field sampling steps. If Field Reagent Blanks were not submitted with the samples, this method requirement has not been performed.
- Samples collected by BSK Analytical Laboratories were collected in accordance with the BSK Sampling and Collection Standard Operating Procedures.
- J-value is equivalent to DNQ (Detected, not quantified) which is a trace value. A trace value is an analyte detected between the MDL and the laboratory reporting limit. This result is of an unknown data quality and is only qualitative (estimated). Baseline noise, calibration curve extrapolation below the lowest calibrator, method blank detections, and integration artifacts can all produce apparent DNQ values, which contribute to the un-reliability of these values.
- · (1) Residual chlorine and pH analysis have a 15 minute holding time for both drinking and waste water samples as defined by the EPA and 40 CFR 136. Waste water and ground water (monitoring well) samples must be field filtered to meet the 15 minute holding time for dissolved metals.
- · Summations of analytes (i.e. Total Trihalomethanes) may appear to add individual amounts incorrectly, due to rounding of analyte values occurring before or after the total value is calculated, as well as rounding of the total value.
- RL Multiplier is the factor used to adjust the reporting limit (RL) due to variations in sample preparation procedures and dilutions required for matrix interferences.
- Due to the subjective nature of the Threshold Odor Method, all characterizations of the detected odor are the opinion of the panel of analysts. The characterizations can be found in Standard Methods 2170B Figure 2170:1.
- The MCLs provided in this report (if applicable) represent the primary MCLs for that analyte.

Definitions

mg/L:	Milligrams/Liter (ppm)	MDL:	Method Detection Limit	MDA95:	Min. Detected Activity
mg/Kg:	Milligrams/Kilogram (ppm)	RL:	Reporting Limit: DL x Dilution	MPN:	Most Probable Number
μg/L:	Micrograms/Liter (ppb)	ND:	None Detected at RL	CFU:	Colony Forming Unit
μg/Kg:	Micrograms/Kilogram (ppb)	pCi/L:	Picocuries per Liter	Absent:	Less than 1 CFU/100mLs
%:	Percent Recovered (surrogates)	RL Mult:	RL Multiplier	Present:	1 or more CFU/100mLs
NR:	Non-Reportable	MCL:	Maximum Contaminant Limit		

Please see the individual Subcontract Lab's report for applicable certifications.

BSK is not accredited under the NELAP program for the following parameters:

Certifications: Please refer to our website for a copy of our Accredited Fields of Testing under each certification.

F	res	١n	n

State of California - ELAP State of Nevada	1180 CA000792016-1	State of Hawaii State of Oregon - NELAP	4021 4021
EPA - UCMR3	CA00079	State of Washington	C997-16
State of New York Sacramento	12073		
State of California - ELAP San Bernardino	2435		
State of California - ELAP Vancouver	2993	State of Oregon - NELAP	4119-001
State of Oregon - NELAP	WA100008-008	State of Washington	C824-16

A7E0202 FINAL 05152017 1623

Printed: 5/15/2017

05022017

geico8314

Standard Turnaround:

5/16/2017

Due Date:

GEI Consultants

Printed: 5/2/2017 5:06:49PM Page 1 of 1

Page 23 of 26

1414 Stanislaus St., Fresno, CA 93706 (559) 497-2888 · Fax (559) 497-2893

Turnaround Time Request

X Standard - 10 business days

warene	annas.	annual l
	geico8314	A7E0202
	14	2
	10	05/02/2017

Required Fields	Temp: C. O.
	Date needed: Invoice To*: Richard Shatz PO#: 1610373 State*: Zip*: CA 95670 How would you like to receive your completed EDT to California SWRCB (Drinking System Number*: NIA System Number*: NIA System Number*: NIA Control 1 1 - Limited Comments / Station Code / WT Control 2 1 - Limited Control 3 1 - Limited Time Received by: (Stopature and Printing Received by: (Stopature and Printing Received by: (Stopature and Printing Date: Time Received by: (Stopature and Printing Date: Date: Date: Date: Date: Difference of the control of

BSK Associates SR-FL-0002-18

Sample Integrity

B2	K RO	tties: Y es) No I	Page	: <u> </u>	\bot	_	^	***************************************				
_	Chemis	mperature within r stry ≤ 6°C Micr	o < 8°C		(Yes) No N	IA		e correct contain lived for the test	•		(Ye	ş	No NA
COC Info		les were taken too Iling has begun?	day, is there evide	nce	Yes No			e there bubbles atiles Only)	in the VOA	vials?	Ye		No 🎑
ည		bottles arrive unbr			Yes N			a sufficient am				e	No
ö		bottle labels agree			Y es N	0		samples have a			\	es/	40
		idium thiosulfate a Iorine was no long	idded to CN samp	le(s)	Yes No (i		Was	PM notified of o	discrepanci By/Time:	es?	Ye	s	No NA
			er(C) 40ml VOA(V)		Checks	Dag	sed?	1-9	By/Time.	4-6	7-9	╗	10-14
		Na ₂ S ₂ O ₃	TO TOTH VOA(V)			- 00		1-0	٠,	1-6			1011
		(P)White Cap	-			<u> </u>		10 19	IC	1C, 18	10,18	2	<u> </u>
	_	**	Sap NH4OH(NH4)2SO4		Cl all a 0	6	N	16,18	10	7/10	' / !!		14
		·			Cl, pH > 8							H	14
م ا	<u></u>) Pink Label/Blue Cap	NH4OH(NH4)2SO4	ww	pH 9.3-9.7	Y	N		e di Parej ngia				
the lal		Black Label/Blue Cap	OLD TIME***	1	pH 9.0-9.5	Υ	N						
i i	HNO ₃	(P) Red Cap or HCI	(P) Purple Cap/Lt. Blue	Label	<u> </u>	-							
me	H ₂ SO ₄	(P) or (AG	Yellow Cap/Label		pH < 2	Υ	N						
Į o	NaOH	(P) Green Cap			CI, pH >10	Υ	Ν						
are performed	NaOH	+ ZnAc (P)			pH > 9	Υ	N						
or ar	Dissol	ved Oxygen 300	ml (g)		_	_							
≰	None	(AG) 608/8081/8082,	625, 632/8321, 8151, 8	8270	-	-	_						
Received are either N/	HCI (A	(G)Lt. Blue Label O&	kG, Diesel	***********		_				A CONTRACTOR OF THE PARTY OF TH		d.,:14	reffel) v a and
ĕ		oic, EDTA, KH ₂ C	Ct (AG)Pink Label 52	 25	_	-	_						
Rec are		0 ₃ 250mL (AG) ^{Ne}											
ı en	<u> </u>	O ₃ 1 Liter (Brown								de de la companya de		34	Ada Na I at a fair a fair
💢 5	Na ₂ S ₂	O ₃ (AG) ^{Blue Label}									30		
B ig	Na ₂ S ₂	O ₃ (CG) Blue Label	The second secon		_	-			Printer to passed	30173 2011 2012			<u> </u>
Bc servation/chlorine	Na ₂ S ₂	O ₃ + MCAA (CG)Orange Label 531		pH < 3	Y	N					V	
atio	NH₄CI	(AG)Purple Label 5	552			-							
Serv	EDA (AG) ^{Brown Label} DE	3Ps										
bre		CG) 524.2,BTEX,G	as, MTBE, 8260/624	1	-	-	_						
ans	Buffer	pH 4 (CG)					_						
ae B	H ₃ PO ₄	(CG) ^{Salmon Label}			_		-,31						
֓֞֞֞֞֞֞֞֞֞֞֞֓֓֓֓֓֓֓֓֓֓֓֡֞֓֓֓֡	Other:												
	Asbes		stic w/ Foil			-	-						
		evel Hg / Metals	Double Baggie		_						1 17 18 18 18 18 18 18 18 18 18 18 18 18 18	10.54	
	Clear	d Water Glass 250mL	. / 500mL / 1 l	Litor	_	•							
	Soil To				-								
	Tedlar	· · · · · · · · · · · · · · · · · · ·	tic Bag		_	-					N. J. J. S. J. St. 1	: 4	
		Container	Preservative	Date	/Time/Initials	3		Container	Pres	servative	Date/	im	e/Initials
Split	SP					1	6 P					•	
ທ	SP					3	S P						
Comments												į	
	 سم روا او و ا	T54 - H	137 Jaha			Th		150x	риен п				

Final Bottle Outline for GEI doing Field-Filtering of Metals (9-4-15) About 57 groundwater samples - BSK Final Pricing as of 4-23-15

geico8314 A7E0202

05/02/2017

Sample Containers, Preservation and Approximate Detection Limits Analytical Parameters, Test Methods, Holding Times, For Groundwater Quality Samples

	ANALYTICAL	MAXIMUM	SAMPLE CONTAINER	TAINER		MUMINIM		SAMPLE BOTTLES
raraneter	METHOD	TIME	BOTTLE ITPE SIZE/SET	SIZE/SE I	PRESERVATION	LIMIT	Cost	
General Minerals								
Akalinity	EPA 310.1	14 Days	Plastic	1 Liter	Cool to 4 °C	5.0 mg/L		CHANGE to 1 x 500 ml Plastic White Cap
Bicarbonate						je.		non-preserved for Minerals
Calcium	EPA 200.7	6 Months	Plastic	1 Liter	Cool to 4 °C	1.0 mg/L		1x1L plastic no preservation
Chloride	EPA 300.0	28 Days	Plastic	1 Liter	Cool to 4 °C	1.0 mg/L		(anions/TDS/ MBAS)
Fluoride	EPA 300.0	28 Days	Plastic	1 Liter	Cool to 4 °C	0.1 mg/L		
Hardness	SM2340B	6 Months	Plastic	1 Liter	Cool to 4 °C	1.0 mg/L		w/HNO3 for field filtered metals
Magnesium	EPA 200.7	6 Months	Plastic	1 Liter	Cool to 4 °C	1.0 mg/L	235	500 ml plastic can be used - 250 ml is easier)
MBAS	SM5540C	48 Hours	Plastic	1 Liter	Cool to 4°C	0.1 mg/L	(included	(w/ NO3 if filtered in the field)
Nitrate	EPA 300.0	48 Hours	Plastic	1 Liter	Cool to 4 °C	2.0 mg/L	Alkalinity and Boron)	(non-preserved if lab filteres)
PН	EPA 150.1	Immediate	Plastic	1 Liter	Cool to 4 °C	None Required	001011	
Potassium	EPA 200.7	6 Months	Plastic	1 Liter	Cool to 4 °C	1.0 mg/L		NOTE: If samples are collected on a FRIDAY
Sodium	EPA 200.7	6 Months	Plastic	1 Liter	Cool to 4 °C	1.0 mg/L		needed for the Nitrate comple that will be
Specific Conquetance (EC)	SM 2510-B	28 Days	Plastic	1 Liter	Cool to 4 °C	10 umhos/cm		subcontracted
Sulfate	EPA 300.0	28 Days	Plastic	1 Liter	Cool to 4 °C	0.50 mg/L		
Total Dissoived Solids (TDS)	SM 2450-C	7 Days	Plastic	1 Liter	Cool to 4 °C	1.0 mg/L		
General Physical								
Celer	SM2120B	48 Hours	Amber Glass	250 ml.	Cool to 4 °C			7-10-2014 - per Cathy, Gen Phy will not be analyzed on
Odor	?	ņ	?	?	?	ŗ		any of these MW samples
Turbidity	EPA 180.1	48 Hours	Amber Glass	250 ml.	Cool to 4 °C	0.5 NTU		
Metals								
Drinking Water Metals (dissolved)							inlcuded	see metals above
TI,V,Zn)	EPA 200 Series	6 Months	Plastic	200 mL	HNO3, cool to 4 °C	Varies	above	(will use same bottle)
Boron							di.	
Hexavalent Chromium	EPA 218.6	7 days	Plastic	125 mL.	NH3 + NH4 (pH 9)	1 ug/L	\$75.00	250 ml p w/HN4 + buffer
Isotopes	26							
Tritium	·lu	s tltnoM 9	Plastic	200 mŁ	Cool to 4°C		\$125.00	1x500 AG bottle - no preservation
Isotopes *60/*6 and *H/*H	ţ	6 Months	Plastic	200 mL	Cool to 4°C		15 0	1x600 ml plastic - no preservation
to open or a dia in it								
Other		14 Davs	Plastic	1 1 1	Cool to 4 °C		\$45.00	from GM bottle
Other Perchlorate	EPA 314.0	- Cayo		ו בונפו				

Notes:

All other groups of analyses are assembled from groups published by CLS. Actual analysis groups from BSK need to be confirmed. There will be an additional \$30 RUSH subcontract fee for the nitrates on samples submitted on Friday.

1

A7G1747 8/02/2017

Invoice: A718810

Richard Shatz GEI Consultants 2868 Prospect Park Drive, Suite 400 Rancho Cordova, CA 95670

RE: Report for A7G1747 Western Placer County GW Recharge

Dear Richard Shatz,

Thank you for using BSK Associates for your analytical testing needs. In the following pages, you will find the test results for the samples submitted to our laboratory on 7/18/2017. The results have been approved for release by our Laboratory Director as indicated by the authorizing signature below.

The samples were analyzed for the test(s) indicated on the Chain of Custody (see attached) and the results relate only to the samples analyzed. BSK certifies that the testing was performed in accordance with the quality system requirements specified in the 2009 TNI Standard. Any deviations from this standard or from the method requirements for each test procedure performed will be annotated alongside the analytical result or noted in the Case Narrative. Unless otherwise noted, the sample results are reported on an "as received" basis.

If additional clarification of any information is required, please contact your Project Manager, Adam Trevarrow, at (800) 877-8310 or (559) 497-2888 x116.

Thanks again for using BSK Associates. We value your business and appreciate your loyalty.

Sincerely,

Adam Trevarrow, Project Manager

Accredited in Accordance with NELAP ORELAP #4021

QA-RP-0001-10 Final.rpt

Western Placer County GW Recharge

Case Narrative

Project and Report Details Invoice Details

Client:GEI ConsultantsInvoice To: GEI ConsultantsReport To:Richard ShatzInvoice Attn: Sandy St. Hilaire

Project #: Placer County Water Samples - 1610374 Project PO#: 1610374

Received: 7/18/2017 - 11:20 **Report Due:** 8/01/2017

Sample Receipt Conditions

Cooler: Default Cooler Containers Intact

Temperature on Receipt °C: 5.8 COC/Labels Agree
Received On Wet Ice

Packing Material - Bubble Wrap

Sample(s) were received in temperature range.

Initial receipt at BSK-SAC

Cooler: New Cooler Containers Intact

Temperature on Receipt °C: 18.9 COC/Labels Agree
Received On Wet Ice

Received On Wet Ice

Packing Material - Bubble Wrap

Sample(s) were received in temperature range.

Initial receipt at BSK-SAC

Data Qualifiers

The following qualifiers have been applied to one or more analytical results:

DL1.0 Sample required a dilution due to the matrix or high concentration of a non-target analyte.

MS1.0 Matrix spike recoveries exceed control limits.

MS1.4 Matrix spike recovery data unreliable due to significant parent sample concentration relative to fortification level (>4x).

Report Distribution

Recipient(s)	Report Format	CC:	
Richard Shatz	FINAL.RPT		
David Fairman	FINAL.RPT		
Sandy St. Hilaire	FINAL.RPT		

Placer County Water Samples - 1610374

Certificate of Analysis

Sample ID: A7G1747-01 Sampled By: Dennis Ho Sample Description: MW 3-2 Sample Date - Time: 07/12/17 - 10:15

Matrix: Ground Water

Sample Type: Grab

BSK Associates Laboratory Fresno General Chemistry

Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed	Qual
Alkalinity as CaCO3	SM 2320B	200	3.0	mg/L	1	A709032	07/18/17	07/18/17	
Bicarbonate as CaCO3	SM 2320B	200	3.0	mg/L	1	A709032	07/18/17	07/18/17	
Carbonate as CaCO3	SM 2320B	ND	3.0	mg/L	1	A709032	07/18/17	07/18/17	
Hydroxide as CaCO3	SM 2320B	ND	3.0	mg/L	1	A709032	07/18/17	07/18/17	
Chloride	EPA 300.0	44	1.0	mg/L	1	A709375	07/24/17	07/24/17	
Conductivity @ 25C	SM 2510B	680	1.0	umhos/cm	1	A709032	07/18/17	07/18/17	
Fluoride	EPA 300.0	0.20	0.10	mg/L	1	A709375	07/24/17	07/24/17	
pH (1)	SM 4500-H+ B	7.6		pH Units	1	A709032	07/18/17	07/18/17	
pH Temperature in °C		23.2							
Sulfate as SO4	EPA 300.0	57	1.0	mg/L	1	A709662	07/29/17	07/29/17	
Total Dissolved Solids	SM 2540C	440	5.0	mg/L	1	A709108	07/19/17	07/24/17	

					RL				
Analyte	Method	Result	RL	Units	Mult	Batch	Prepared	Analyzed	Qual
Calcium - Dissolved (1)	EPA 200.7	48	0.10	mg/L	1	A709206	07/20/17	07/31/17	
Hardness as CaCO3, Dissolved	SM 2340B	250	0.41	mg/L					
Hardness as CaCO3, Dissolved	SM 2340B	250	0.41	mg/L					
Magnesium - Dissolved (1)	EPA 200.7	32	0.10	mg/L	1	A709206	07/20/17	07/31/17	
Potassium - Dissolved (1)	EPA 200.7	ND	2.0	mg/L	1	A709206	07/20/17	07/31/17	
Sodium - Dissolved (1)	EPA 200.7	44	1.0	mg/L	1	A709206	07/20/17	07/31/17	

Placer County Water Samples - 1610374

Certificate of Analysis

Sample ID: A7G1747-02 Sampled By: Dennis Ho Sample Description: MW 4 Sample Date - Time: 07/12/17 - 11:10

Matrix: Ground Water

Sample Type: Grab

BSK Associates Laboratory Fresno General Chemistry

Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed	Qual
Alkalinity as CaCO3	SM 2320B	290	3.0	mg/L	1	A709032	07/18/17	07/18/17	
Bicarbonate as CaCO3	SM 2320B	290	3.0	mg/L	1	A709032	07/18/17	07/18/17	
Carbonate as CaCO3	SM 2320B	ND	3.0	mg/L	1	A709032	07/18/17	07/18/17	
Hydroxide as CaCO3	SM 2320B	ND	3.0	mg/L	1	A709032	07/18/17	07/18/17	
Chloride	EPA 300.0	610	2.0	mg/L	2	A709375	07/24/17	07/24/17	
Conductivity @ 25C	SM 2510B	2600	1.0	umhos/cm	1	A709032	07/18/17	07/18/17	
Fluoride	EPA 300.0	ND	0.20	mg/L	2	A709375	07/24/17	07/24/17	DL1.0
pH (1)	SM 4500-H+ B	7.2		pH Units	1	A709032	07/18/17	07/18/17	
pH Temperature in °C		23.1							
Sulfate as SO4	EPA 300.0	100	2.0	mg/L	2	A709663	07/29/17	07/29/17	
Total Dissolved Solids	SM 2540C	1500	5.0	mg/L	1	A709108	07/19/17	07/24/17	

Metals

					RL				
Analyte	Method	Result	RL	Units	Mult	Batch	Prepared	Analyzed	Qual
Calcium - Dissolved (1)	EPA 200.7	120	0.10	mg/L	1	A709206	07/20/17	07/31/17	
Hardness as CaCO3, Dissolved	SM 2340B	650	0.41	mg/L					
Hardness as CaCO3, Dissolved	SM 2340B	650	0.41	mg/L					
Magnesium - Dissolved (1)	EPA 200.7	86	0.10	mg/L	1	A709206	07/20/17	07/31/17	
Potassium - Dissolved (1)	EPA 200.7	ND	2.0	mg/L	1	A709206	07/20/17	07/31/17	
Sodium - Dissolved (1)	EPA 200.7	240	1.0	mg/L	1	A709206	07/20/17	07/31/17	

Placer County Water Samples - 1610374

Certificate of Analysis

Sample ID: A7G1747-03
Sampled By: Dennis Ho
Sample Description: WPMW-3A

Sample Date - Time: 07/12/17 - 12:45

Matrix: Ground Water

Sample Type: Grab

BSK Associates Laboratory Fresno General Chemistry

Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed Qual
Alkalinity as CaCO3	SM 2320B	92	3.0	mg/L	1	A709032	07/18/17	07/18/17
Bicarbonate as CaCO3	SM 2320B	92	3.0	mg/L	1	A709032	07/18/17	07/18/17
Carbonate as CaCO3	SM 2320B	ND	3.0	mg/L	1	A709032	07/18/17	07/18/17
Hydroxide as CaCO3	SM 2320B	ND	3.0	mg/L	1	A709032	07/18/17	07/18/17
Chloride	EPA 300.0	760	2.0	mg/L	2	A709375	07/24/17	07/24/17
Conductivity @ 25C	SM 2510B	3000	1.0	umhos/cm	1	A709032	07/18/17	07/18/17
Fluoride	EPA 300.0	0.25	0.20	mg/L	2	A709375	07/24/17	07/24/17
pH (1)	SM 4500-H+ B	7.7		pH Units	1	A709032	07/18/17	07/18/17
pH Temperature in °C		23.0						
Sulfate as SO4	EPA 300.0	180	2.0	mg/L	2	A709663	07/29/17	07/29/17
Total Dissolved Solids	SM 2540C	1800	5.0	mg/L	1	A709108	07/19/17	07/24/17

					RL				
Analyte	Method	Result	RL	Units	Mult	Batch	Prepared	Analyzed	Qual
Calcium - Dissolved (1)	EPA 200.7	170	0.10	mg/L	1	A709206	07/20/17	07/31/17	MS1.4
Hardness as CaCO3, Dissolved	SM 2340B	600	0.41	mg/L					
Hardness as CaCO3, Dissolved	SM 2340B	600	0.41	mg/L					
Magnesium - Dissolved (1)	EPA 200.7	41	0.10	mg/L	1	A709206	07/20/17	07/31/17	MS1.4
Potassium - Dissolved (1)	EPA 200.7	4.6	2.0	mg/L	1	A709206	07/20/17	07/31/17	
Sodium - Dissolved (1)	EPA 200.7	380	1.0	mg/L	1	A709206	07/20/17	07/31/17	

Placer County Water Samples - 1610374

Certificate of Analysis

Sample ID: A7G1747-04 **Sampled By:** Dennis Ho

Sample Description: WPCMW-5B

Sample Date - Time: 07/13/17 - 10:42

Matrix: Ground Water

Sample Type: Grab

BSK Associates Laboratory Fresno General Chemistry

Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed Qual
Alkalinity as CaCO3	SM 2320B	110	3.0	mg/L	1	A709032	07/18/17	07/18/17
Bicarbonate as CaCO3	SM 2320B	110	3.0	mg/L	1	A709032	07/18/17	07/18/17
Carbonate as CaCO3	SM 2320B	ND	3.0	mg/L	1	A709032	07/18/17	07/18/17
Hydroxide as CaCO3	SM 2320B	ND	3.0	mg/L	1	A709032	07/18/17	07/18/17
Chloride	EPA 300.0	390	1.0	mg/L	1	A709375	07/24/17	07/24/17
Conductivity @ 25C	SM 2510B	1500	1.0	umhos/cm	1	A709032	07/18/17	07/18/17
Fluoride	EPA 300.0	0.25	0.10	mg/L	1	A709375	07/24/17	07/24/17
pH (1)	SM 4500-H+ B	7.9		pH Units	1	A709032	07/18/17	07/18/17
pH Temperature in °C		22.9						
Sulfate as SO4	EPA 300.0	ND	1.0	mg/L	1	A709663	07/29/17	07/29/17
Total Dissolved Solids	SM 2540C	840	5.0	mg/L	1	A709108	07/19/17	07/24/17

					RL				
Analyte	Method	Result	RL	Units	Mult	Batch	Prepared	Analyzed	Qual
Calcium - Dissolved (1)	EPA 200.7	53	0.10	mg/L	1	A709206	07/20/17	07/31/17	
Hardness as CaCO3, Dissolved	SM 2340B	160	0.41	mg/L					
Hardness as CaCO3, Dissolved	SM 2340B	160	0.41	mg/L					
Magnesium - Dissolved (1)	EPA 200.7	7.3	0.10	mg/L	1	A709206	07/20/17	07/31/17	
Potassium - Dissolved (1)	EPA 200.7	2.9	2.0	mg/L	1	A709206	07/20/17	07/31/17	
Sodium - Dissolved (1)	EPA 200.7	220	1.0	mg/L	1	A709206	07/20/17	07/31/17	

Placer County Water Samples - 1610374

Certificate of Analysis

Sample ID: A7G1747-05 Sampled By: Dennis Ho Sample Description: W77-B Sample Date - Time: 07/13/17 - 13:45 Matrix: Ground Water

Sample Type: Grab

BSK Associates Laboratory Fresno General Chemistry

Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed	Qual
Alkalinity as CaCO3	SM 2320B	120	3.0	mg/L	1	A709032	07/18/17	07/18/17	
Bicarbonate as CaCO3	SM 2320B	120	3.0	mg/L	1	A709032	07/18/17	07/18/17	
Carbonate as CaCO3	SM 2320B	ND	3.0	mg/L	1	A709032	07/18/17	07/18/17	
Hydroxide as CaCO3	SM 2320B	ND	3.0	mg/L	1	A709032	07/18/17	07/18/17	
Chloride	EPA 300.0	390	1.0	mg/L	1	A709375	07/24/17	07/24/17	
Conductivity @ 25C	SM 2510B	1400	1.0	umhos/cm	1	A709032	07/18/17	07/18/17	
Fluoride	EPA 300.0	0.15	0.10	mg/L	1	A709375	07/24/17	07/24/17	
pH (1)	SM 4500-H+ B	7.6		pH Units	1	A709032	07/18/17	07/18/17	
pH Temperature in °C		22.8							
Sulfate as SO4	EPA 300.0	ND	1.0	mg/L	1	A709662	07/29/17	07/29/17	
Total Dissolved Solids	SM 2540C	950	5.0	mg/L	1	A709108	07/19/17	07/24/17	

Metals

					RL				
Analyte	Method	Result	RL	Units	Mult	Batch	Prepared	Analyzed	Qual
Calcium - Dissolved (1)	EPA 200.7	72	0.10	mg/L	1	A709206	07/20/17	07/31/17	
Hardness as CaCO3, Dissolved	SM 2340B	310	0.41	mg/L					
Hardness as CaCO3, Dissolved	SM 2340B	310	0.41	mg/L					
Magnesium - Dissolved (1)	EPA 200.7	32	0.10	mg/L	1	A709206	07/20/17	07/31/17	
Potassium - Dissolved (1)	EPA 200.7	4.6	2.0	mg/L	1	A709206	07/20/17	07/31/17	
Sodium - Dissolved (1)	EPA 200.7	150	1.0	mg/L	1	A709206	07/20/17	07/31/17	

Placer County Water Samples - 1610374

Certificate of Analysis

Sample ID: A7G1747-06 Sampled By: Dennis Ho Sample Description: SVMW 2C Sample Date - Time: 07/13/17 - 17:10 Matrix: Ground Water

Sample Type: Grab

BSK Associates Laboratory Fresno General Chemistry

Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed	Qual
Alkalinity as CaCO3	SM 2320B	92	3.0	mg/L	1	A709032	07/18/17	07/18/17	
Bicarbonate as CaCO3	SM 2320B	92	3.0	mg/L	1	A709032	07/18/17	07/18/17	
Carbonate as CaCO3	SM 2320B	ND	3.0	mg/L	1	A709032	07/18/17	07/18/17	
Hydroxide as CaCO3	SM 2320B	ND	3.0	mg/L	1	A709032	07/18/17	07/18/17	
Chloride	EPA 300.0	550	2.0	mg/L	2	A709375	07/24/17	07/24/17	
Conductivity @ 25C	SM 2510B	2000	1.0	umhos/cm	1	A709032	07/18/17	07/18/17	
Fluoride	EPA 300.0	ND	0.20	mg/L	2	A709375	07/24/17	07/24/17	DL1.0
pH (1)	SM 4500-H+ B	7.8		pH Units	1	A709032	07/18/17	07/18/17	
pH Temperature in °C		22.8							
Sulfate as SO4	EPA 300.0	ND	2.0	mg/L	2	A709663	07/29/17	07/29/17	DL1.0
Total Dissolved Solids	SM 2540C	1400	5.0	mg/L	1	A709108	07/19/17	07/24/17	

					RL				
Analyte	Method	Result	RL	Units	Mult	Batch	Prepared	Analyzed	Qual
Calcium - Dissolved (1)	EPA 200.7	110	0.10	mg/L	1	A709206	07/20/17	07/31/17	
Hardness as CaCO3, Dissolved	SM 2340B	350	0.41	mg/L					
Hardness as CaCO3, Dissolved	SM 2340B	350	0.41	mg/L					
Magnesium - Dissolved (1)	EPA 200.7	20	0.10	mg/L	1	A709206	07/20/17	07/31/17	
Potassium - Dissolved (1)	EPA 200.7	4.4	2.0	mg/L	1	A709206	07/20/17	07/31/17	
Sodium - Dissolved (1)	EPA 200.7	250	1.0	mg/L	1	A709206	07/20/17	07/31/17	

BSK Associates Laboratory Fresno General Chemistry Quality Control Report

				Spike	Source		%REC		RPD	Date
Analyte	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Analyzed Qual
		EPA 3	00.0 - Q	uality Co	ntrol					
Batch: A709375										Prepared: 7/24/2017
Prep Method: Method Specific Preparat	ion									Analyst: BCE
Blank (A709375-BLK1)										
Chloride	ND	1.0	mg/L							07/24/17
Fluoride	ND	0.10	mg/L							07/24/17
Blank Spike (A709375-BS1)										
Chloride	100	1.0	mg/L	100		101	90-110			07/24/17
Fluoride	1.0	0.10	mg/L	1.0		103	90-110			07/24/17
Matrix Spike (A709375-MS1), Source: A	7G1738-02									
Chloride	70	1.0	mg/L	50	16	106	80-120			07/24/17
Fluoride	0.64	0.10	mg/L	0.50	ND	108	80-120			07/24/17
Matrix Spike (A709375-MS2), Source: A	7G1536-01									
Chloride	51	1.0	mg/L	50	ND	102	80-120			07/24/17
Fluoride	0.54	0.10	mg/L	0.50	ND	107	80-120			07/24/17
Matrix Spike Dup (A709375-MSD1), Sou	rce: A7G1738-02									
Chloride	67	1.0	mg/L	50	16	101	80-120	4	20	07/24/17
Fluoride	0.61	0.10	mg/L	0.50	ND	102	80-120	5	10	07/24/17
Motrix Spike Dup (A700275 MSD2) Sou	man: A7C1E2E 01									
Matrix Spike Dup (A709375-MSD2), Sou		1.0	ma/l	50	ND	102	90 120	1	20	07/24/17
Chloride Fluoride	51 0.53	1.0 0.10	mg/L mg/L	50 0.50	ND ND	103 106	80-120 80-120	1	20 10	07/24/17
		EDA 2	_	uality Ca	ntrol					
Batch: A709662		EFA 3	JU.U - Q	uality Co	iiiioi					Prepared: 7/29/2017
Prep Method: Method Specific Preparat	tion									Analyst: BCB
Blank (A709662-BLK1)										
Sulfate as SO4	ND	1.0	mg/L							07/29/17
			J							
Blank Spike (A709662-BS1)	400	4.0	/1	400		100	00 110			07/00/47
Sulfate as SO4	100	1.0	mg/L	100		102	90-110			07/29/17
Matrix Spike (A709662-MS1), Source: A	7G1738-02									
Sulfate as SO4	58	1.0	mg/L	50	7.0	101	80-120			07/29/17
Matrix Spike Dup (A709662-MSD1), Sou	rce: A7G1738-02									
Sulfate as SO4	59	1.0	mg/L	50	7.0	103	80-120	2	20	07/29/17
		EPA 30	00.0 - Q	uality Co	ntrol					
Batch: A709663				•						Prepared: 7/29/2017
Prep Method: Method Specific Preparat	ion									Analyst: BCB
Blank (A709663-BLK1)										
Sulfate as SO4	ND	1.0	mg/L							07/29/17
			-							
A7G1747 FINAL 08022017 1403										
Printed: 8/2/2017										

Printed: 8/2/2017

BSK Associates Laboratory Fresno General Chemistry Quality Control Report

				Spike	Source		%REC		RPD	Date
Analyte	Result	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Analyzed Qual
		EPA 3	00.0 - Qu	ality Co	ntrol					
Batch: A709663	_									Prepared: 7/29/201
Prep Method: Method Specific Preparat	tion									Analyst: BCI
Blank Spike (A709663-BS1)										
Sulfate as SO4	100	1.0	mg/L	100		101	90-110			07/29/17
Matrix Spike (A709663-MS1), Source: A	7G1738-03									
Sulfate as SO4	50	1.0	mg/L	50	ND	99	80-120			07/29/17
Matrix Spike Dup (A709663-MSD1), Sou				F 0	NO	404	00.100	_	66	07/00/47
Sulfate as SO4	51	1.0	mg/L	50	ND	101	80-120	2	20	07/29/17
		SM 23	20B - Qu	ality Co	ntrol					
Batch: A709032										Prepared: 7/18/2017
Prep Method: Method Specific Preparat	tion									Analyst: CEC
Blank (A709032-BLK1)										
Alkalinity as CaCO3	ND	3.0	mg/L							07/18/17
Bicarbonate as CaCO3	ND	3.0	mg/L							07/18/17
Carbonate as CaCO3	ND	3.0	mg/L							07/18/17
Hydroxide as CaCO3	ND	3.0	mg/L							07/18/17
Blank Spike (A709032-BS1)										
Alkalinity as CaCO3	100	3.0	mg/L	100		101	80-120			07/18/17
Blank Spike Dup (A709032-BSD1)										
Alkalinity as CaCO3	100	3.0	mg/L	100		100	80-120	1	20	07/18/17
Duplicate (A709032-DUP1), Source: A70	G1568-03									
Alkalinity as CaCO3	95	3.0	mg/L		97			2	10	07/18/17
Bicarbonate as CaCO3	95	3.0	mg/L		97			2	10	07/18/17
Carbonate as CaCO3	ND	3.0	mg/L		ND				10	07/18/17
Hydroxide as CaCO3	ND	3.0	mg/L		ND				10	07/18/17
		SM 25	10B - Qu	ality Co	ntrol					
Batch: A709032				=						Prepared: 7/18/2017
Prep Method: Method Specific Preparat	tion									Analyst: CEC
Blank Spike (A709032-BS1)										
Conductivity @ 25C	1400	1.0	umhos/c	1400		103	90-110			07/18/17
			m							
Blank Spike Dup (A709032-BSD1)										
Conductivity @ 25C	1500	1.0	umhos/c	1400		104	90-110	1		07/18/17
			m							
Duplicate (A709032-DUP1), Source: A70	G1568-03									
Conductivity @ 25C	240	1.0	umhos/c		250			7	20	07/18/17
			m							

A7G1747 FINAL 08022017 1403

Printed: 8/2/2017

BSK Associates Laboratory Fresno General Chemistry Quality Control Report

Analyte	Result	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Date Analyzed Qual
		SM 25	40C - Qւ	uality Co	ntrol					
Batch: A709108										Prepared: 7/19/201
Prep Method: Method Specific Prep	paration									Analyst: DEI
Blank (A709108-BLK1)										
Total Dissolved Solids	ND	5.0	mg/L							07/24/17
Blank Spike (A709108-BS1)										
Total Dissolved Solids	990	5.0	mg/L	1000		99	70-130			07/24/17
Duplicate (A709108-DUP1), Source:	A7G1732-03									
Total Dissolved Solids	180	5.0	mg/L		180			1	20	07/24/17
Duplicate (A709108-DUP2), Source:	A7G1478-01									
Total Dissolved Solids	620	5.0	mg/L		620			0	20	07/24/17
		SM 4500	-H+ B -	Quality C	Control					
Batch: A709032										Prepared: 7/18/201
Prep Method: Method Specific Prep	paration									Analyst: CE0
Duplicate (A709032-DUP1), Source:	A7G1568-03									
pH (1)	7.9		pH Units		7.9			0	20	07/18/17

BSK Associates Laboratory Fresno Metals Quality Control Report

				Spike	Source		%REC		RPD	Date	
Analyte	Result	RL	Units	Level	Result	%REC	Limits	RPD		Analyzed	Qual
		EPA 20	00.7 - Qı	uality Co	ntrol						
Batch: A709206				•						Prepare	d: 7/20/201
Prep Method: Filtration - Metals										Aı	nalyst: MD
Blank (A709206-BLK2)											
Calcium - Dissolved (1)	ND	0.10	mg/L							07/31/17	
Magnesium - Dissolved (1)	ND	0.10	mg/L							07/31/17	
Potassium - Dissolved (1)	ND	2.0	mg/L							07/31/17	
Sodium - Dissolved (1)	ND	1.0	mg/L							07/31/17	
Blank Spike (A709206-BS2)											
Calcium - Dissolved (1)	3.9	0.10	mg/L	4.0		98	85-115			07/31/17	
Magnesium - Dissolved (1)	3.9	0.10	mg/L	4.0		98	85-115			07/31/17	
Potassium - Dissolved (1)	4.0	2.0	mg/L	4.0		100	85-115			07/31/17	
Blank Spike (A709206-BS3)											
Sodium - Dissolved (1)	3.9	1.0	mg/L	4.0		98	85-115			08/01/17	
Blank Spike Dup (A709206-BSD2)											
Calcium - Dissolved (1)	3.9	0.10	mg/L	4.0		98	85-115	1	20	07/31/17	
Magnesium - Dissolved (1)	3.8	0.10	mg/L	4.0		95	85-115	3	20	07/31/17	
Potassium - Dissolved (1)	4.1	2.0	mg/L	4.0		102	85-115	2	20	07/31/17	
Blank Spike Dup (A709206-BSD3)											
Sodium - Dissolved (1)	3.9	1.0	mg/L	4.0		97	85-115	1	20	08/01/17	
Matrix Spike (A709206-MS3), Source: A7	G1733-01										
Calcium - Dissolved (1)	30	0.10	mg/L	4.0	25	122	70-130			07/31/17	
Magnesium - Dissolved (1)	18	0.10	mg/L	4.0	13	109	70-130			07/31/17	
Potassium - Dissolved (1)	9.3	2.0	mg/L	4.0	5.2	102	70-130			07/31/17	
Sodium - Dissolved (1)	13	1.0	mg/L	4.0	8.9	102	70-130			07/31/17	
Matrix Spike (A709206-MS4), Source: A7	G1747-03										
Calcium - Dissolved (1)	160	0.10	mg/L	4.0	170	NR	70-130			07/31/17	MS1.0 Low
Magnesium - Dissolved (1)	42	0.10	mg/L	4.0	41	14	70-130			07/31/17	MS1.0 <i>Lov</i>
Potassium - Dissolved (1)	8.2	2.0	mg/L	4.0	4.6	91	70-130			07/31/17	
Sodium - Dissolved (1)	360	1.0	mg/L	4.0	380	NR	70-130			07/31/17	MS1.0 <i>Lou</i>
Matrix Spike Dup (A709206-MSD3), Sour	ce: A7G1733-01										
Calcium - Dissolved (1)	29	0.10	mg/L	4.0	25	109	70-130	2	20	07/31/17	
Magnesium - Dissolved (1)	17	0.10	mg/L	4.0	13	99	70-130	2	20	07/31/17	
Potassium - Dissolved (1)	9.3	2.0	mg/L	4.0	5.2	101	70-130	1	20	07/31/17	
Sodium - Dissolved (1)	13	1.0	mg/L	4.0	8.9	99	70-130	1	20	07/31/17	
Matrix Spike Dup (A709206-MSD4), Sour	ce: A7G1747-03										
Calcium - Dissolved (1)	170	0.10	mg/L	4.0	170	NR	70-130	5	20		MS1.0 <i>Lov</i>
Magnesium - Dissolved (1)	44	0.10	mg/L	4.0	41	58	70-130	4	20		MS1.0 Low
Potassium - Dissolved (1)	8.3	2.0	mg/L	4.0	4.6	93	70-130	1	20	07/31/17	
Sodium - Dissolved (1)	370	1.0	mg/L	4.0	380	NR	70-130	5	20	07/31/17	MS1.0 Lou

Certificate of Analysis

Notes:

- The Chain of Custody document and Sample Integrity Sheet are part of the analytical report.
- Any remaining sample(s) for testing will be disposed of according to BSK's sample retention policy unless other arrangements are made in advance.
- All positive results for EPA Methods 504.1 and 524.2 require the analysis of a Field Reagent Blank (FRB) to confirm that the results are not a contamination error from field sampling steps. If Field Reagent Blanks were not submitted with the samples, this method requirement has not been performed.
- Samples collected by BSK Analytical Laboratories were collected in accordance with the BSK Sampling and Collection Standard Operating Procedures.
- J-value is equivalent to DNQ (Detected, not quantified) which is a trace value. A trace value is an analyte detected between the MDL and the laboratory reporting limit. This result is of an unknown data quality and is only qualitative (estimated). Baseline noise, calibration curve extrapolation below the lowest calibrator, method blank detections, and integration artifacts can all produce apparent DNQ values, which contribute to the un-reliability of these values.
- · (1) Residual chlorine and pH analysis have a 15 minute holding time for both drinking and waste water samples as defined by the EPA and 40 CFR 136. Waste water and ground water (monitoring well) samples must be field filtered to meet the 15 minute holding time for dissolved metals.
- · Summations of analytes (i.e. Total Trihalomethanes) may appear to add individual amounts incorrectly, due to rounding of analyte values occurring before or after the total value is calculated, as well as rounding of the total value.
- · RL Multiplier is the factor used to adjust the reporting limit (RL) due to variations in sample preparation procedures and dilutions required for matrix interferences.
- Due to the subjective nature of the Threshold Odor Method, all characterizations of the detected odor are the opinion of the panel of analysts. The characterizations can be found in Standard Methods 2170B Figure 2170:1.
- The MCLs provided in this report (if applicable) represent the primary MCLs for that analyte.

Definitions

mg/L:	Milligrams/Liter (ppm)	MDL:	Method Detection Limit	MDA95:	Min. Detected Activity
mg/Kg:	Milligrams/Kilogram (ppm)	RL:	Reporting Limit: DL x Dilution	MPN:	Most Probable Number
μg/L:	Micrograms/Liter (ppb)	ND:	None Detected at RL	CFU:	Colony Forming Unit
μg/Kg:	Micrograms/Kilogram (ppb)	pCi/L:	Picocuries per Liter	Absent:	Less than 1 CFU/100mLs
%:	Percent Recovered (surrogates)	RL Mult:	RL Multiplier	Present:	1 or more CFU/100mLs
NR:	Non-Reportable	MCL:	Maximum Contaminant Limit		

Please see the individual Subcontract Lab's report for applicable certifications.

BSK is not accredited under the NELAP program for the following parameters:

Certifications: Please refer to our website for a copy of our Accredited Fields of Testing under each certification.

F	r۵	cı	20	

State of California - ELAP State of Nevada EPA - UCMR4 State of New York	1180 CA000792016-1 CA00079 12073	State of Hawaii State of Oregon - NELAP State of Washington	4021 4021 C997-16
Sacramento State of California - ELAP San Bernardino	2435	Chate of Oregon NELAD	4440 004
State of California - ELAP Vancouver State of Oregon - NELAP	2993 WA100008-008	State of Oregon - NELAP State of Washington	4119-001 C824-16

07182017

geico8314

Turnaround: Standard

Due Date: 8/1/2017

GEI Consultants

1414 Stanislaus St., Fresno, CA 93706 (559) 497-2888 · Fax (559) 497-2893

X Standard - 10 business days **Turnaround Time Request**

ger	operate the second seco	Salester Marries	
		geico8314	A7G1747
		10	07/18/2017

Peyment for services rendered as noted herein are due in full within 30 on the ClientCompany acknowledges that they are either the Client or an a can be found at www.bskassociates.com/BSKLabTermsConditions.pdf	Cooling Method: (Wet) Blue	Non-Brown	Recognition by Conjunture and Publisher Williams	Reinguished by (Signature and Printed Name) Demmis				6 3 SUMW. 2C	> 3 W77-B	3 WPCHW-513	3 3 WPMW-3A	7 WW G	2 MW 3-2	# S:	Matrix Types. SW	Dennis Ho	Sampler Name (Printed/Signature)*:	Trace (J-Flag) Swamp	Reporting Options	Project Placer County	2868 Prospect Park Drive, Suite 400	GEI COIIsultants, IIIC.	Company/Client Name*:		Engineer Laboratories
are due in full within 30 days from the date invoiced. If not a either the Client or an authorized agent to the Client, that a abTermisConditions.pdf	UPS GSO	esta ass		innis Ho						5				Sample Description*	Matrix Types. SW=Surface Water BW=Bottled Water. GW=Ground Water. WW=Waster. Water. STW=Storm Water. DW=Drinking Water. SO=So		: }	mp X EDD Type: Std Excel	H. C. H. L.	\mathcal{J}	ve, Suite 400 AV 7/14	Ric	Repo	*Required Fields	Š
so paid, account balances are deemed delinquent. I the Client agrees to be responsible for payment for	WALK-IN FED EX C		Company GET	COMPANY Consultants				7/12/17 170	3/18/17/1845 (,	1245	11 lò	2101	Sampled* Date Time	und Water WW=Waste Water STW=St	Ε		SWRCB (Drinking Water)	Regulatory Carbon Conies	Project #:	Rancho Cordova	Richard Shatz	Report Attention*: David Fairman	Temp:	
Express the services endeded as noted here are due in till within 30 days from the date invoiced. It not so paid, account balances are deemed delinquent. Delinquent balances are subject to monthly service changes and interest specified in BSK's current Standard Terms and Conditions for Laboratory Services. The person signing for the Client as packed person to be calculated as a condition of the services on this Chain of Custody, and agrees to BSK's terms and conditions for laboratory services unities contractually bound otherwise. BSK's current terms and conditions of the services on the Conditions of the Services on this Chain of Custody, and agrees to BSK's terms and conditions for laboratory services unities contractually bound otherwise. BSK's current terms and conditions for laboratory services unities contractually bound otherwise. BSK's current terms and conditions for laboratory services unities contractually bound otherwise.	Courier:	187 11, 20 Date:	MIT 6903 Received by (Signa	Date 7/13/h 18:15 Received by: (Signature and Printed Name)				C.W	GW .	GIM Red bothe is unfiltered.	(S)VV	SIN	ColW		orm Water DW=Drinking Water SO=Solid	Geotracker # Not for Geotracker	Fresno Co System Number*: N/A	EDT to California SWRCB (Drinking Water)	X E-Mail	e to receive your completed	CA 95670		Richard Shatz	5.8 /8.9	` L
ecified in BSK's current Standard Terms and Co ditions for laboratory services unless contractu	Custody Seal: Y / NC Chilling Process Begun: W/ N	Amount:	c. Grant	erdun Eurte				7	< <	\ \ \ \	<	\ \ \	111	filter	np ed	Į√h les∶	nee	MW Mi)	∕√ℓ.	Va (\$	E-mail*: DFairman@geiconsultants.com	916-631-4528		gintroccobh
anditions for Laboratory Services. The person signing fo	B B	Check / Cash	SAC	Company 6 EL Consmitments				ζ	<	√	<	<			rati	s v ho	ldir				73	onsultants.com	子 cell:415-420-2154	11	

10

Sample Integrity

BSK Bottles:/Yes No Page (of / Was temperature within range? Were correct containers and preservatives Yes, Yes No NA No NA Chemistry ≤ 6°C Micro < 8°C received for the tests requested? If samples were taken today, is there evidence Were there bubbles in the VOA vials? Yes No Na Yes No (NA) that chilling has begun? (Volatiles Only) Did all bottles arrive unbroken and intact? (es Was a sufficient amount of sample received? Ves_ Nο No Did all bottle labels agree with COC? Do samples have a hold time <72 hours? Mo Yes) No Yes Was sodium thiosulfate added to CN sample(s) Was PM notified of discrepancies? Yes No Na (NA Yes No until chlorine was no longer present? By/Time: 250ml(A) 500ml(B) 1Liter(C) 40ml VOA(V) Checks Passed? 1-? 3-5 Bacti Na₂S₂O₃ None (P)White Cap 14,18 14,18 14/13 Cr6 (P) Lt. Green Label/Blue Cap NH4OH(NH4)2SO4 DW CI, pH > 8N Cr6 (P) Pink Label/Blue Cap NH4OH(NH4)2SO4 WW pH 9.3-9.7 Υ Ν Cr6 (P) Black Label/Blue Cap NH40H(NH4)2S04 7199 pH 9.0-9.5 N ***24 HOUR HOLD TIME*** HNO3 (P) Red Cap or HCI (P) Purple Cap/Lt. Blue Label 13 Yellow Cap/Label H₂SO₄ (P) or (AG) pH < 2 N NaOH (P) Green Cap Cl, pH >10 Υ N NaOH + ZnAc (P) Y pH > 9 Dissolved Oxygen 300ml (g) None (AG) 608/8081/8082, 625, 632/8321, 8151, 8270 **Bottles Received** HCI (AG)Lt. Blue Label O&G. Diesel Ascorbic, EDTA, KH2Ct (AG)Pink Label 525 Na₂SO₃ 250mL (AG)^{Neon Green Label} 515 Na₂S₂O₃ 1 Liter (Brown P) 549 Na₂S₂O₃ (AG)^{Blue Label} 548, THM, 524 Na₂S₂O₃ (CG) Blue Label 504, 505, 547 Na₂S₂O₃ + MCAA (CG)^{Orange Label} 531 N pH < 3NH₄Cl (AG)^{Purple Label} 552 EDA (AG)Brown Label DBPs HCL (CG) 524.2,BTEX,Gas, MTBE, 8260/624 Buffer pH 4 (CG) H₃PO₄ (CG)Salmon Label Other: Asbestos 1Liter Plastic w/ Foil Low Level Hg / Metals Double Baggie **Bottled Water** Clear Glass 250mL / 500mL / 1 Liter Soil Tube Brass / Steel / Plastic Tedlar Bag / Plastic Bag Container Preservative Preservative Date/Time/Initials Date/Time/Initials Container Split SP SP SP Comments

Labels checked by:

RUSH Paged by:_